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Abstract Based on a kinematic modeling of the planetary ball mill, the kinematic equations giving the 
velocity and the acceleration of a ball in a vial in a planetary ball mill are given. The kinetic energy 
transferred at the collision event, the shock frequency, and the injected shock power are also calculated. 
The confrontation of the calculated to some experimental results documented in the material literature, 
show that neither the shock energy nor the shock frequency separately taken into account, govern the 
end product but only the injected shock power is responsible for the ball milled end product. 

l. INTRODUCTION 

The results of the ball milling process are various. 
So, we can obtain the formation of amorphous phases 
by milling pure elements [1 3] or by milling elemental 
metal ribbons [4, 5] and the formation of intennetallics 
from pure elements [6, 7]. Also, mechanical alloying 
(MA) is a process used for producing powders having 
a fine microstructural scale [8] and/or a technique for 
alloying non-miscible materials [9]. Solid solution can 
also be considerably supersaturated compared to the 
thermodynamic equilibrium [10]. The process is also 
inherently flexible. As such, it is reasonable to expect 
it to grow in importance. However, there are con- 
siderable gaps in the fundamental  knowledge base 
relative to MA, as there has been little attempt to 
analyse it in a manner  that would establish predictive 
capabilities for it or at least determine the real 
physical parameter governing the phase transitions 
under this solicitation type. Thus, up to now, few 
attempts have been made to make a precise description 
of such a complex process. 

Maurice and Courtney [11] try to give an approach 
defining the geometry and the basic mechanics of the 
powder-work piece interaction for several common 
devices used for MA, since these informations allow 
pertinent parameters of the process (e.g. impact 
velocity, powder material volume impacted, time 
between impacts, etc.) to be identified in terms of 
machine characteristics and process operating par- 
ameters. In the above mentioned work, three con- 
figurations were expected--a vertical mill such as the 
Szegvari attritor, the vibratory mill and the conven- 
tional horizontal ball mill. The numerical calculations 
show that the phase transitions are governed by only 
the injected shock energy. 

Burgio et al. [12] attempt to correlate the milling 
operative conditions and the end product in a "'Fritsch 

Pulverisette P 5" ball mill. In the same mentioned 
work, the authors try to study the influence of the ball 
radius, the ball mass and the number  of balls used on 
the end product. The shock frequency was assumed 
to scale with the relative velocity co r (o9 r = o~ v - ~ p  
with co V and 92p respectively the vial and the disc 
rotation speeds). 

Magini [13], using the difference between the 
potential energies before and after the collision event 
of a ball on a flat surface, calculates the kinetic shock 
energy released by the ball into the powders. The 
effect of the shock frequency is not taken into account 
at all. 

Hachimoto et al. [14] calculate the shock energy 
consumption and the shock frequency during alloy- 
ing using a vibrating ball mill. The authors conclude 
that the shock energy consumption is a function of 
a viscoelastic coefficient and increases with increasing 
this viscoelastic coefficient which has no physical 
meaning. 

We have reported in our previous work [15], 
based on a mathematical treatment of the mech- 
anical alloying process and experimental results 
on the ball-milled end product of the Ni~0Zr7 
compound,  that neither the kinetic shock energy 
nor the shock frequency, separately taken into 
account, govern the end product. In other words, 
we proved that, at the stationary state, the end 
product depends only on the shock power, which is 
the product of the shock energy and the shock 
frequency. 

The aim of this paper is to report on the details 
of  such a mathematical treatment and the com- 
parison of the experimental and the calculated 
results. 

Since the kinetic shock energy consumption is not 
well defined until this moment,  and to simplify the 
problem, the following assumptions are taken into 
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account to do the numerical calculations: 

• the kinetic shock energy is released in totality 
into the powders, 

• there is not relative motion between the ball 
and the vial wall prior to the departure point, 
i.e. the ball does not slip, 

• after the flying time, the ball is newly attached 
to the wall without any elapsed time. 

It is clear that the proposed collision model does 
not represent the real process but it is a useful 
simplification to determine the real physical par- 
ameter governing the far from equilibrium phase 
transitions induced by ball milling. 

2. MATHEMATICAL TREATMENT OF THE 
PROCESS TAKING PLACE IN A 

PLANETARY BALL MILL 

In the approximation of collision, Mc Kormick 
et al. [16] have done some improvement of the basic 
model of Burgio et al. [12] considering a "slip factor" 
that makes the trajectory of the flying ball rather 
different from the calculated one. A transparent top 
cover was used to allow the ball motion to be recorded 
using a high speed video camera [16]. The raw foot- 
age was edited and transferred to drawing software 
via an image analysis system [16]. Le Brunet  al. [17] 
confirmed this by a videotape recording of this type 
of trajectory. The authors [16] state that a significant 
slip occurs between the ball and the wall of the vial. 
The relative ball/vial slip was characterized by defin- 
ing a slip factor, f~, where J~ = 1 - cob/co r (co b is the 
relative angular velocity of the ball in contact with the 
vial wall) [16]. Taking into account this "slip factor" 
the authors [16] state that the value of the slip factor 
f~ has a larger effect on the departure frequency and 
that the shock frequency is directly determined by the 
product of the disc speed and (1 -f~).  We agree with 
the assumption that the slip factor affects the shock 
frequency but we do not agree with the assumption 
which states that the shock frequency is the product 
of the disc rotation speed and (1 - f~)  since we assume 
that shock frequency will be given by the inverse of 
one ball motion cycle duration. 

Since, in the "Fritsch Pulverisette P7" planetary 
ball mill, the disc and the vial rotation speeds are 
coupled, the authors [16] are not able to study the 
effect of the kinetic shock energy, the shock frequency 
or the injected shock power separately taken into 
account. Thus, they state that the phase transitions or 
the kinetic reactions were governed only by the shock 
energy. 

Our calculations were carried out for two planetary 
mills called G5 and G7. They exhibit respectively the 
same disc radius as the so called "Fritsch Pulverisette 
5" and "Pulverisette 7". The aim of the construction 
of these two devices is the possibility of an indepen- 
dent variation of the disc and vial rotation speeds in 
order to study the shock energy, the shock frequency 
and the shock power effects. 

In this section, the ball motion in the vial along 
one cycle is studied taking into account the above 
mentioned simplifying assumptions. Thus, the co- 
ordinates of the ball, when it is stuck to the inner vial 
surface and after leaving the inner vial surface (detach- 
ment event), are calculated. The equations proposed 
do not take into account the slip factor, really exist- 
ing during the mechanical alloying process [16, 17], 
nevertheless they make a good approach to prove 
that neither the kinetic shock energy nor the shock 
frequency, taken into account separately, govern the 
phase transitions and that the end product depends 
only on the shock power. 

The application of the fundamental dynamic 
principle gives the ball detachment condition which 
allows the calculation of the ball detachment position 
and the detachment velocity. These latter parameters 
(detachment position and detachment velocity) are 
used in order to calculate the motion of the ball from 
the detachment event until the collision one. 

The ball collision velocity gives the kinetic energy 
released from the ball to the powders. The time needed 
between two collision events or two detachment events 
gives the shock frequency. 

The modeling of the planetary ball mill is given 
in Fig. A1 and explained in paragraph A of the 
Appendix. 

2. I. Abso lu t e  veloci ty  and  absolute  accelerat ion o f  the 

ball  before the d e t a c h m e n t  event  

The adopted references (O, I, ,l, K) and (O~, I, 3, 
K) (Fig. A1) to do these calculations are Cartesian 
ones, with "O" the disc center and O~ the vial center. 
The disc radius is taken as the distance between the 
disc center and the vial center such as R = OOa. 
The ball is illustrated by the material "M"  point. 
The vial rotation sense is the opposite of the disc one. 

Based on Fig. A1, the "M" point position is 
defined as 

OM = [R cos(0 ) + r cos(c0]I 

+ [R sin(0) + r sin(c0]J. (1) 

The absolute velocity of the "M"  point is given by 
the derivation of the OM vector expression given by 
equation (1) along the time. The final expression of 
the absolute velocity Va and its amplitude are given 
in paragraph B of the Appendix as 

Va = [ -  Rf~ sin(0 ) + rw sin(~)]I 
w 

+ [Rf~cos(0)-  rw cos(e)]J (2) 

II Va II 2 = (Rf~) 2 + ( r w )  2 - 2 R r f ~ w  cos(0 - ~). (3) 

The absolute acceleration ~,, of the point "M"  
obtained by the derivation of its absolute velocity V a 
along the time, is given as follows 

~, = { - R f~  2 cos(0 ) - rw  2 cos(a)} I 

+ {--Rf~ 2 sin(0) -- rw 2 sin(=)}J (4) 
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or along the Up and up vectors as 

~'a = - Rf22Up - rw2up - (5) 

Its amplitude is given by 

II "l~a II 2 = (R~~2)  2 -I- ( r w 2 )  2 

+ 2RrfFwZcos(O - ~). (6) 

The expression (5) is illustrated in Fig. A2. It is the 
same expression as that given by Burgio et al. [12]. So, 
in this work, we try to give calculations of the kinetic 
shock energy, the shock frequency and the injected 
shock power taking into account the ball trajectory in 
the vial along one cycle. 

2.2. Calculation o f  the detachment velocity and the 
detachment acceleration 

Based on the fundamental dynamic principle, the 
resultant of the external forces acting on the ball is 
equal to the product of its mass by its acceleration. 
The physical forces applied to the ball are its weight 
(gravitational action) and the vial reaction. The ball 
weight is negligible as compared with the vial reaction. 
So, the resultant of the external forces is equal to the 
vial reaction, thus 

F~ (vial reaction) = m~a. (7) 

In a reference fixed to the ball, this latter is 
considered as fixed. So it will be submitted to two 
opposite forces: F1 ,  the vial reaction and F 2 such that 
the vectorial sum of F~ and F 2 is equal to a null vector. 
Thus, the F 2 force is a centrifugal force such that 
F2 = - m ~ , , .  So, the ball dynamic equilibrium is 
given as 

- mra + F 1 (vial reaction) = 0. (8) 

The resolution of equation (8) can be done easily 
when writing the absolute acceleration and the vial 
reaction as a function of the u 0 and u~ vectors. 
The expression of the absolute acceleration is given in 
paragraph C of the Appendix as: 

~,~ = [ -  Rf22 cos(~ - 0 ) - rw2]u~ 

+ R~z s i n ( ~ -  0)u~. (9) 

By combining equations (8) and (9), and by writing 
the vial reaction F~ as a sum of two components F~p 
and F~,, the following system is obtained 

F l p - - m [ - - R ~ 2 c o s ( ~ - 0 ) - - r w 2 ] u p = 0  (10a) 

Fl~ -- m [Rf~ 2 sin(e -- 0 )] u~ = 0 (10b) 

with F~p the normal vial reaction and F~, the 
tangential vial reaction. 

To have the detachment of the ball from the vial, 
we will have the cancellation of the normal vial 
reaction component F~0 (component along the up 
vector). So, equation (10a) of the above mentioned 
system will be simplified as 

cos(~ - 0 ) = - r w Z / R ~  2. (1 1) 

Thus, the amplitude of the absolute velocity and 
absolute acceleration at the detachment event, taking 
into account the detachment condition and the ball 
radius are the following: 

[IVallZ=(Rf~)2+(r - rb)2W2[l + 2w/f~] (12) 

II •a ]]2 = (R~,']2)2 _ [(r - r b ) w 2 ]  2. (13) 

2.3. Calculation o f  the collision point position 

To obtain the time between detachment and 
collision events, a numerical solution using computer 
facilities is adopted. Figure A3 shows the ball motion 
from a detachment event up to a collision event, where 
(0d, ~d) and (0c, ~c) are the values of the disc and vial 
angular positions at the detachment and collision 
events respectively, V a and Vc are the detachment and 
the collision velocities respectively, Md and Mc are the 
ball positions at the detachment and the collision 
events respectively and (upa, u J  and (ups, u~) are 
the vectors defining the cylindrical referentials at the 
detachment and the collision events respectively. For 
the numerical calculations, to have an easy and clear 
geometrical formulation and further simplification 
of the parameter calculations, we assume that the 0 d 
value corresponding to the detachment event is equal 
to n/2. If we give another value to the 0d angle, 
this will cause a change in the value of the ~d angle 
corresponding to the detachment event, but the 
calculation result will remain unchanged. 

In the following calculations, the effective radius r* 
which is equal to (r - rb) is taken into account instead 
of the vial radius "r".  The detachment condition was 
given by equation (11). So, the detachment s0 angle 
value is given by the following expression 

cos{(~/2) - cq} = - w Z r * / ~ 2 R  (14a) 

which can be simplified as 

sin(c~ d ) = - w 2r */922R. (1 4b) 

When the effect of the gravitational force is 
neglected, the ball will follow a uniform linear motion 
with a constant velocity V d and an initial position 
OMd (Fig. A3). Its motion expression at a "t" instant 
after the detachment event is 

OM = xI + y a  = Vdt + OMd (15) 

which can be decomposed along the "X" and the 
"Y" axis, as [with C = sin(c~d)] 

x I  = Vdxt + O M d x  

= { [ - R Q  + r*wC]t + r*(l -- C2)°5}I (16a) 

y J = Vdy t + OMdy 

= {--[r 'w(1 -- C:)°s]t + (R + r*C)}J. (16b) 

The details of such results are given in paragraph 
D of the Appendix. 

At this same time "t",  a "P"  point of the vial 
has the following expression (in Fig. A3, the "M~" 
point represents the "P"  point at the collision event) 
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O P  = [R cos(0) + r* cos(~)]l 

+ [R sin(0) + r* sin(~)lJ. (17) 

Writing: OP~ = [R cos(0) + r* cos(~)] and OP,. = 
[R sin(0) + r* sin(c0], with 

0 = ~ / 2 + ~ t  (18) 

(at the " t "  time equal to the 0, the 0 angle is 
equal to 7z/2 which is the supposed first detachment 
angle). 

The first collision event occurs when the following 
condition is fulfilled: x = OP~ and y = OPt, with x 
and y the ball coordinates after the detachment event 
and OP~ and OPy represent the coordinates of the 
" P "  point [the Mc point (Fig. A3)]. The numerical 
resolution consists to: 

(1) increment of the time value by a time step 
interval "At"  (gs), 

(2) calculation of the 0 angle value, given by 
equation (18), 

(3) variation of the 7 angle value from 0 to -27;,  
by an increment of its value by a negative angle step 
interval Ae of -0 .01  ° (the A~ value is negative to 
have a vial rotation sense opposite to the disc one) 
and finally, 

(4) calculation of the OP~ and OP:. values and x 
and y values. If the condition .v = OP~ and y = OPr 
is fulfilled, we have the first collision point coordinates 
values (x and y) along the "X"  axis and the "Y"  axis, 
the 0~ and ~ angular positions respectively of the disc 
and the ball in the vial, as well as the time " t "  needed 
between the first detachment event and the first 
collision event. 

2.4. Calculation oJ the kinetic energy by one hit 

The kinetic energy "Ek" depends only on the ball 
detachment absolute velocity, since V~ = V d. It is 
given by the following expression 

Ek= l/2m IIV~li2= 1/2m Vdll 2. (19) 

As the angle between the collision velocity and 
the vial surface, at the collision event depends on 
the ball milling condition, the kinetic energy is de- 
composed into two components: the friction energy 
and the shock energy. To obtain a quantitative value 
of the friction energy and the shock energy, the 
collision velocity V~ will be decomposed into two 
components: a normal velocity V~, and a tangential 
velocity V~ (Fig. A3). The normal velocity com- 
ponent  is along the % vector (perpendicular to 
the vial surface) and induces the shock energy, the 
tangential velocity component  is along the u: vector 
(parallel to the vial surface) and induces the friction 
energy. Thus, the friction kinetic energy "Gk" is 
given as 

Ejx = l/2m II V~ II 2 (20a) 

and the shock kinetic energy "&k" is given as 

E~k = 1/2m 11V~0 II 2. (20b) 

The expression of tile normal velocity Vc, and 
the tangential velocity V~ are respectively given in 
paragraph E of the Appendix. 

2.5. Calculation o/ the shock Jrequency 

The shock frequency " f "  is the number  of 
collisions per second. Thus, the knowledge of the 
ball trajectory from the detachment event up to the 
collision event is required to calculate the shock 
frequency. The cycle period is decomposed into two 
periods T~ and ~ with T~ the period of time needed 
by the ball to go from the detachment point up to the 
collision point and T 2 the period of time needed to 
have the first detachment event after the first collision 
one. The T~ period value is calculated using the 
computer facilities. In other words, it is the "1" 
period such as the condition x = OP, and y = op~ 
that is fulfilled. Figure A4 shows the ball position to 
have the second detachment event, where (0c, ~c) and 
(0~2, c~2) arc the values of the disc and vial positions 
at the first collision and the second detachment events 
respectively, M~2 the ball position at the second 
detachment event and (u,d2, u~e2) the vectors defining 
the cylindrical referential at the second detachment 
event. Based on Fig. A4, before the second detachment 
event, when the ball is stuck to the inner vial surface, 
it is submitted to the vial reaction F~,, such that 

FI,, + Yl~, = 0 (21a) 

FI -m[R~)2cos(f l )-r*w2]up=O (21b) 

w i t h f i = - z + 2 a n d 2 = 0 d 2 + q a n d r / -  2~z-:~d2. 
To have the second detachment of the ball from 

the inner vial surface, we will have the cancellation 
of the normal vial reaction component F~,, as it was 
assumed in equation (10a). Thus, to have the second 
detachment event the following condition will be 
fulfilled 

- m [ - ( r * w  ~) 

+ RfF cos( - 7r + (0d2 - 2~r - ~a2))]u,, = 0. 

This latter can be simplified as 

r*w2/Rf22 = cos(--3rt + 0d: -- :~a2). (21C) 

The 0d: and ~a: angles correspond, respectively, to 
the positions of the disc and the ball in the vial at the 
second detachment event (Fig. A4). They are given by 
the following equations 

002 = 0~ + f~T2 and 3{62 = ~ - wT~ (22) 

with 0~ and c~, the values of the angular positions 
respectively of the disc and the ball in the vial at the 
first collision event and T 2 the time period needed, 
after the first collision event, to reach the second 
detachment event. The values of 0~ and ~ angular 
positions are given by the computer calculations 
and correspond to the satisfaction of the x = op~ and 
y = OP, conditions. To calculate the T: period, 
we will replace the 0d2 and c~a: angles by their above 
mentioned expressions (22), in equation (21c). 
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Alter  replacement, we have 

T2 = [3~c - (0~ - a~) 

+ arcos(r*w:/Rf~Z)]/(f~ + w). (23) 

As the cycle period " T "  is the sum of the two 
period components Tl and Tz, the shock frequency 
value is given by the inverse of  the cycle period and 
is given by the following expression 

1 
f =  T~ + ~ "  (24) 

This shock frequency corresponds to one ball. 
So, when operating with a given number of  balls, the 
shock frequency is equal to the product of  one ball 
frequency with the balls number corrected by a factor 
~< 1. The fact is studied above by Burgio et al. [11]. 

Based on Fig. A4, it is easy to see that the 
decomposit ion of  the absolute acceleration into its 
two components and the absolute intensities of  these 
latter are the same as those reported in Fig. A2 
and the disc position is the same as that reported in 
Fig. A3 but shifted by an angle value equal to f~ 
(T~ + 7":). Thus, we conclude that we have a real 
periodicity of  the ball motion in the vial. 

2,6. Calculation o f  the shock power 

The power released by the ball to the powders is 
the product of  the frequency with the kinetic energy. 
It is given by the following expression 

P = T , dE~ = r E  k. (25) 

The cumulated kinetic energy released from the 
ball to the powders during a ball milling duration 
" B M D " ,  is given by the product of  the shock power 
[equation (25)] by the ball milling duration value. 

L _ _  _ , 7  

\ 

J 

I pure amOrphOus ) 7~ . '~ -c~ / ' - - "11  
[.~ 0.15 '-- phases 

: ~ . 1 " ~ '  

0.10 i . . . . . . . .  T-'2~2~,'-'T'T': ~ , J~ _ ~ . . . .  
350 4O0 4.5O 5O0 55O 600 

Disc rotation speed (r.p.m) 

Fig. I. Kinetic energy by one hit as a function of the disc 
and the vial rotation speeds corresponding to the G5 ~ )  
and the G7 ( ) planetary ball mills. The vial rotation 
speed values are referred by the numbers 1, 2 and 3 written 
near each corresponding curve: 1 = 150, 2 = 250 and 3 = 
350 rpm. The kinetic energies corresponding to the exper- 
imental ball milling conditions illustrated in Fig. 4 by the 
data points a, b, c, d and e for the G5 device and a', b', 
c' and d' for the G7 device, leading to the same pure 

amorphous phases formation are reported [15]. 

ball to the powders in one hit, the shock frequency 
and the shock power as a function of the disc and the 
vial rotation speeds [15]. 

Based on these above mentioned figures, the kinetic 
energy and the shock power increase as a function of  
the disc and vial rotation speeds. The shock frequency 
drastically decreases and then increases almost linearly 
as the disc rotation speed increases. For  the so called 
G5 planetary ball mill, the maximum kinetic energy 
can reach 0.9 J/hit  (0.3 J/hit  for the G7 device), for 
a disc and vial rotation speeds respectively equal to 

3. NUMERICAL CALCULATIONS RESULTS 

Our calculations are carried out for two planetary 
ball mills called G5 and G7, The so called G5 and G7 
planetary ball mills exhibit respectively the same disc 
radius as the so called Fritsch "Pulverisette 5" and 
"Pulverisette 7". The aims of  the construction of  
these two devices arc first, the possibility of  variation 
of  the disc and vial rotation speeds independently 
and second, the study of  the disc radius effect on the 
kinetic energy, the shock frequency and the shock 
power. Furthermore, an ultrasonic tachometer control 
during the milling process allows a true control of  the 
effective vials and disc rotations speeds, 

The disc radius corresponding to the so called G5 
and G7 planetary ball mills are respectively equal to 
132 x 10 3 and 75 x 10 3m. The vial radius is equal 
to 21 x 10 3 m. The ball radius and the ball mass are 
respectively equal to 7.5 x 10 3 m and 14 g. Five balls 
are used in order to calculate the shock energy, the 
shock frequency and the shock power. 

Figures 1, 2 and 3 (solid line: G5 mill and dashed 
line: G7 mill) give the kinetic energy released from one 

! / / "  A 

"~ . "  d' ¢ 

~4o ..7~--/" b' ~ J 

','11! " ~ "/ ( experimenta amorphous 1 
201 ~_ 1 / ' /  L phases i 

1 
tO I , J I , , L J , ~• J J • J - ~ ± l ~  ~ J ~  L~ L ~  

0 100 200 3OO 4OO 5OO 6OO 70O 8OO 
Disc rotation speed (r.p.m) 

Fig. 2. Shock frequency as a function of the disc and vial 
rotation speeds for the G5 (--) and G7 (- ) planetary ball 
mills. The vial rotation speed values (in rpm) are referred 
by the numbers 1, 2, and 3 written near each correspond- 
ing curve: 1=150, 2 - 2 5 0  and 3-150rpm.  The shock 
frequencies corresponding to the experimental ball milling 
conditions illustrated in Fig. 4 by the data points a, b, c, d 
and e for the G5 device and a', b', c' and d' for the G7 
device, leading to pure amorphous phases formation are 

reported [l 5]. 
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i / "  / / / ' " - " "  ,-')1"6'-'" k phases j )  

200 300 400 500 600 700 800 
Disc rotation speed (r.p.m) 

Fig. 3. Shock power as a function of the disc and vial 
rotation speeds for the G5 (--) and G7 @ -) planetary ball 
mills. The vial rotation speed values (in rpm) are referred by 
the numbers 1, 2, 3, 4 and 5 written near each corresponding 
curve: 1 = 150, 2 = 250, 3 = 350, 4 = 500 and 5 = 600 rpm. 
The shock powers corresponding to the experimental ball 
milling conditions illustrated in Fig. 4 by the data points 
a, b, c, d and e for the G5 device and a', b', c' and d' for 
the G7 device, leading to the same pure amorphous phases 
formation as well as the shock power values corresponding 
to the experimental ball milling conditions, illustrated in 
Fig 4 by the data points f, g, h, i and j for the G5 device 
and e', f', g', h', i', j', k' and l' for the G7 device, leading 
to the formation of a mixture of crystalline and amorphous 

phases are reported [15] 

800 and 800 rpm. The shock frequency and shock 
power can respectively reach 90.7 Hz (92.4 Hz for 
the G7 device) and 80.2 W (28 W for the G7 device) 
for a disc and vial rotation speeds equal respectively 
to 800 and 800 rpm. 

4. APPLICATION TO THE Nit0Zr ~ COMPOUND 

Gaffet et al. [18] have used the G5 and G7 ball- 
milling machines to study the effect of  the ball milling 
conditions on the end product in the Nil0Zr 7 com- 
pound. In this work [18], 10 g of molten spun r ibbon 
pieces of mean composition Ni58.8Zr41.2 (in atomic 
percent), corresponding to the Nit0Zr 7 intermetallic 
compound are introduced into a cylindrical tempered 
steel container of capacity 45 ml. This procedure is 
carried out in a glove-box filled with purified argon. 
Each container is loaded with five steel balls of 1.5 cm 
dia and 14g mass. The containers are sealed in 
the glove-box with a Teflon O-ring and the milling 
proceeds in a stationary argon atmosphere. The ball 
milling duration corresponding to the stationary state 
is 48 h (the use o f  a ball milling duration greater than 
48 h does not change the end product result. The initial 
state (prealloyed elemental component material) does 
not effect the end product). The structures of the as- 
spun ribbons have been checked by X-ray diffraction 
(XRD) patterns and have been confirmed to corre- 
spond purely to the Nij0Zr7 intermetallic compound.  
For the ball milled samples, a numerical method 
"ABFfit  program" was used in order to analyze the 
XRD patterns and to obtain the position and the 
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Fig. 4. Superimposition of the end-product structure 
corresponding to the ball milling of the Ni~0Zr 7 compound 
at room temperature by means of the G5 and G7 machine. 
On the left Y-axis, the ~67 rotation speeds are reported, on 
the right Y-axis, the f~Gs values are noted. The filled symbols 
correspond to pure amorphous phases, whereas the half- 
filled symbols correspond to mixture of crystalline and 
amorphous phases. The dashed areas correspond to the two 

amorphous domains [15]. 

full width at half height of the various peaks. The 
crystalline phases taken into account are those which 
correspond to the equilibrium phases in the N i -Zr  
phase diagram. The same authors [18] report on the 
experimental ball milling conditions leading to the 
formation of pure amorphous phases and the form- 
ation of a mixture of amorphous and crystalline 
phases. Figure 4 [15] illustrates the [18] data and shows 
a dynamic phase diagram mapped into two regions: 
a pure amorphous phase region (filled symbols) and 
mixture of crystalline and amorphous phases region 
(half-filled symbols). The hatched areas correspond 
to the two amorphous domains. 

Eckert et al. [19] elaborate amorphous powders by 
mechanical alloying from Ni -Zr  crystalline elemental 
powders. The mechanical alloying was performed 
in a conventional planetary ball mill (Fritsch 
"Pulverisette 5"). The ball milling intensities used are 
3, 5 and 7. The authors [19] show that for ball milling 
intensity 5 a pure amorphous phase is formed from 
about  30 to 83 at.% Ni. The ball milling durat ion 
required to achieve the amorphization process was 
60 h. For  ball milling intensity 7, for the same ball 
milling durat ion (60 h), the authors report on the 
formation of an intermetallic phase form x = 66 to 75 
at.% Ni. For  ball milling intensity 3, the amorphiz- 
ation is not  achieved even at extended ball milling 
duration. 

Based on our mathematical treatment of the process 
taking place in the planetary ball mill, the calculated 
shock energies corresponding to the experimental ball 
milling conditions leading to the amorphous phases 
formation [18] are reported in Fig. 1 [15]. The calcu- 
lated shock energies leading to the amorphous phase 
formation for the G5 device (lozenge symbol) range 
from about  194 x 10 3 to about 227 x 10 3j/hit. 
For  the G7 ball mill (circle symbol), the calculated 
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shock energies leading to the same amorphous phases 
as the G5 one, range from about 109 x 10 3 to about 
157 x 10-3j/hit. 

As shown in Fig. 1 [15], there is no overlapping 
between the two energy domains corresponding to 
the same amorphous phases formation when using the 
G5 and G7 devices. The calculated shock frequencies 
corresponding to the experimental ball milling con- 
ditions leading to the amorphous phases formation 
are reported in Fig. 2 [15]. As concluded above for the 
shock energy, there is no perfect overlapping between 
the two frequency domains corresponding to the same 
amorphous phases formation when using the two 
devices. The calculated shock powers corresponding 
to the experimental ball milling conditions leading to 
the amorphous phase formation are reported in Fig. 3 
[15]. Based on this figure, there is a perfect overlapping 
between the shock power domains leading to the 
same amorphous phases induced when using the G5 
(square symbols) and G7 (circle symbols) devices. 
Moreover, when considering Fig. 3 [! 5] the calculated 
shock powers corresponding to the experimental ball 
milling conditions leading to the formation of a mix- 
ture of crystalline and amorphous phases [15] (f, g, h, 
i and j points for the G5 device and e', f ' ,  g', h', i' and 
k' points for the G7 device), we see that the power 
values corresponding to these experimental data points 
lie outside the shock power domain corresponding 
to pure amorphous phase formation (bounded by the 
two horizontal chain lines). Thus, we conclude that 
neither the shock energy nor the shock frequency, 
separately taken into account, govern the end product 
but only the injected shock power is responsible for 
the ball milled end product. 

Based on the experimental results [18] and the 
calculated results, the amorphous phase formation 
is allowed for the shock power ranging from 4 to 
8.2 W. The ball milling duration, corresponding to the 
stationary state, used to obtain the amorphous phases 
either by the G5 or the G7 planetary ball mill is 48 h 
[18] and all the ball milling durations greater than 
or equal to 48 h do not change the ball milled end 
product obtained for 48 h. Figure 3 [15] illustrates 
the dynamically end product phase diagram which is 
mapped into three regions as a function of the shock 
power; a first corresponding to the formation of a 
mixture of amorphous and crystalline phases reported 
for the low power values, a second corresponding to 
the formation of pure amorphous phases reported for 
the medium power values and finally a third corre- 
sponding to the formation of a mixture of amorphous 
and crystalline phases reported for high power values. 
The crystalline phases obtained even for low or high 
injected shock powers correspond to the Nij0Zr7 
intermetallic compound. 

We assume that if the shock power is lower than 
a minimum value, mechanical alloying induces, after 
a long ball milling duration, only a refinement of 
the powder grain size and an increase of the defect 
quantity until reaching a steady state which is not 

able to be destabilized into another structural state, 
whereas, if the shock power is greater than a mini- 
mum power value, mechanical alloying induces a 
refinement of the powder grain size and an increase 
of the defect quantity at a rate able to induce, even 
in the earlier stages of mechanical alloying, a mixture 
of structurally transformed phase and initial phase. 
In the latter case, the steady state can result, depend- 
ing on the value of the shock power, in a mixture of 
structurally transformed phase and initial phase or in 
a homogeneous structurally transformed phase. The 
steady state is reached when elastic energy storage in 
the powder become impossible. 

We assume that for the low shock power values, 
the increase of the free energy of the crystalline 
powders, due to the increase of the defect concen- 
tration induced by plastic deformation is not high 
enough to promote the formation of only a pure 
amorphous phase and the input crystalline phases 
are able to remain crystalline at even a such shock 
power. For the medium shock power level, the defect 
concentration, Gc + AGd > Ga, where G0 is the free 
energy of the crystalline phase, AGd is the increase 
in the free energy due to the defects introduced by 
MA and G a is the free energy of the amorphous 
phase. Thus, only a pure amorphous phase is able 
to be formed. This fact is reported by Brimhall 
e t  al. [20] and Schwarz et  al. [21]. For  the high shock 
power level, we have, as like the low power level, 
formation of a mixture of crystalline and amorphous 
phases. 

Eckert et  al. [19] assume that the temperature 
during mechanical alloying is a very important 
parameter of the process. They conclude that partial 
crystallization can occur during mechanical alloying 
at high milling intensities. Thus the crystallization can 
not simply be caused by the milling but must be an 
effect of excess heating during mechanical alloying. 
Based on the procedure proposed by Schwarz et  al. 

[21], they estimate the peak temperature reached 
within the powder particles during milling. They 
obtained A T =  130,247 and 407°C for intensities 
3, 5 and 7 respectively. Since an isothermal anneal 
of the amorphous powders at 400°C for only 5 min 
is sufficient to produce partially crystallized materials 
with a similar X-ray diffraction pattern to that 
obtained for the NiToZr30 powder milled for 60 h at 
intensity 7, the authors [19] conclude that the actual 
temperature of the individual particles during mech- 
anical alloying can in fact be rather high--a t  least 
high enough to cause the crystallization of the formed 
amorphous particles. Miller e t  al. [22], using micro- 
second time-resolved radiometry, observed tempera- 
ture increases of the order of 400 500°C upon 
impacting NaCl crystals. Davies e t  al. [23] report on 
the ball milling of the brittle elements Si and Ge. 
Based on the procedure proposed by Schwarz et  al. 

[21], they estimated the temperature rise in the ball 
milled Si and Ge to respectively A T =  6.57 and 
10.1 K. 
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Table I. Documented [24] and calculated values (*: thi~ work) of the kinetic energy, the shock frequency and the shock power for the different 
ball mills 

Vibratory mills Planetary ball mills 

Attritor Pulv. O SPEX Pulv. P5 G7 G5 

Velocity of balls (m/s) 0 0.8 0.14-0.24 

Kinetic energy (10 ~ J/hit) < 10 3 30 

Shock frequency (Hz) > 1000 15 50 

Power (W/g/ball) <0.001 0.005 0.14 

<3.9 2.5-4 0.24~ 6.58 0.28 1 [.24 

< 120 10-400 0.4 303.2 (I.53- 884 

200 ~ 100 5.0 92.4 4.5 90.7 

<0.24 0.01-0.8 0 0.56 0 1.604 

In a first analysis, we see that there is no agreement 
between the above-reported estimated temperature 
rises. All the same, it is important  to note that these 
temperature rises will induce many structural phase 
transitions. Thus, we think that the crystalline phase 
obtained for high shock power values (Fig. 3) can be 
the result of  a partial crystallization of  the formed 
amorphous due to the excess of heating. 

The assumption of  a total release of the kinetic 
shock energy may translate the levels of  the three 
domains of  the dynamical phase diagram shown in 
Fig. 3 but it does not change its shape and, whatever 
the shock energy consumption percent, the amorph- 
ization proceeds abovc a minimum power input and 
below a certain maximum power input. 

More discussions of  the phase transition mechan- 
isms induced by mechanical alloying arc recently 
reported in our previous work [15]. 

Chert et al. [24] report some results documented on 
the materials literature concerning the kinetic energy, 
the shock frequency and the shock power for three 
most common devices: the Attri tor ball mill, the 
planetary ball mill (Fritsch "'Pulvcrisette P5") and the 
vibratory grinder (e.g. SPEX shaker mill). Table 1 
gives the documented values [24] and the calculated 
values (for the G5 and G7 planetary ball mill) of  the 
kinetic energy, the shock frequency and the shock 
power. 

Based on Table 1, the G5 shock power domain 
covers all the other devices shock power domains. 
More, it was reported by Martin et al. [25], that the 
ball milling power input domain covers some typical 
mechanical straining or irradiating power input 
domains. Thus we assume that the G5 planetary 
ball mill is able to induce the same phase transitions 
which can be induced by all the other devices. 

5. CONCLUSIONS 

Based on a mathematical  treatment of  the process 
taking place in a planetary ball mill, taking into 
account many simplifying assumptions mentioned in 
the beginning, the kinematic equations giving the 
velocity and the acceleration of  a ball in vial in a 
planetary ball mill are given. The kinetic energy 
transferred at the collision event, the shock frequency 
and the shock power are also calculated. The con- 

frontation of the calculation results to experimental 
results, show that, at the stationary state, neither the 
shock energy nor the shock frequency, separately 
taken into account, govern the end product but only 
the injected shock power is responsible for the ball 
milled end product. 

Based on our calculation results and Gaffet et al. 

[18] experimental results, a dynamic end product 
phase diagram is mapped into three regions as a 
function of  the shock power, a first corresponding 
to the formation of  a mixture of  amorphous and 
crystalline (Ni10Zr7 intermetallic compound) phases 
reported for the low power level, a second corre- 
sponding to the formation of pure amorphous phases 
reported for the medium power level and finally a 
third corresponding to the formation of a mixture 
of  amorphous and crystalline (Ni~c~Zr 7 intermetallic 
compound) phases. 

The reported equations will be improved by taking 
into account the slip factor of  the ball/wall at the 
detachment event and the elapsed time at the collision 
event. Moreover,  more searches of the mechanical 
alloying at the local level are needed to have the really 
released shock energy and the free energy excess in 
connection with the injected shock power. 
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A P P E N D I X  

( A ) Refbrences and " M "  Point Position Expression 

Fig. AI shows the ball position " M "  at a " t "  event. 
R: disc radius (m), r: vial radius (m), ru: ball radius (m), m: 
ball mass (kg), " M " ,  a material point representing the ball 
position in the vial. 

0 = ~t, the disc rotation angle with ~ = ~K,  the angular  
disc rotation speed. 

- - w t ,  the vial rotation angle with w - - w K  the angular 
vial rotation speed. 

u,, II R and U 0 2 U:,, up l] r and u~ ± u,.  

Based on Fig. A1, O M  = OO~ + O~M = RU~, + ru o. 

i i 

/ 

\ 

J 

U0 

I 

Fig. A1. Geometry of  the disc and one vial seen from the top. The various vectors and angles are explained 
in the text [15]. 

AM 4 3 / ~ P  
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(B)  Calculation o f  the Absolute Velocity 

The absolute velocity V~ of  the point " M "  is given as 
following 

dR dU o dr Va=~Up+R~-+~up+r ~ .  (BI) 

Thus,  as the two radii R and r, respectively of  the disc and 
the vial, are constant  in time, the expression o f  the absolute 
velocity is simplified to 

dUp dup 
V a = R ~ -  + r - ~  (B2) 

or as, Up = cos(0)I  + sin(0 )J  and up = cos(ct)I + sin(or)J, 
the absolute velocity is given by V a = R  (dO/dt) 
[ -  sin(0 )I + cos(0)J]  + r (dot/dr) [ -s in(c t ) I  + cos(~)J] 
and as, dO/dt = f~ and dct/dt = - w ,  the expression of  the 
absolute velocity is given by 

V~ = R f2 [ -  sin(0 ) i  + cos(0 ) J ]  

- rog[-s in(ct ) l  + cos(ct)J] (B3) 

and as, U 0 = - s i n ( 0 ) I + c o s ( 0 ) J  and u , = - s i n ( o r ) l +  
cos(cO J, 

V a = R~U o - rwu, = [~ ^ RUp + w ^ rup. (B4) 

The final expression of  the absolute velocity V a in the 
Cartesian reference (0,  I, J,  K) and its amplitude are 
respectively given as 

V a = [ - R f l  sin(0 ) + rw sin(~)]I 

+ [ R f l c o s ( 0 ) - -  rw cos(cQ]J. (BS) 

II Va II 2 = (Rf~) 2 + (rw) 2 -- 2Rr~w cos(0 -- ~). (B6) 

(C)  Decomposition o f  the Absolute Acceleration 

Based on equation (5), the absolute acceleration l'a can 
be decomposed into two components  ~ and ])2 such as 
~,~ = - R f I 2 U ,  and ~2 = -rw2up • To be attached to the vial, 
the ball will be submitted to a centrifugal force along the 
up vector. To have the detachment of  the ball from the vial, 
the above mentioned centrifugal force will be cancelled 
and becomes central just after that. To formulate this 
detachment condition, we must  decompose the absolute 
acceleration into two components  the first along the up 
vector and the second along the u~ vector. From Fig. A2, 
the component  },t can be decomposed into two components  
]% and ~,~ such as 

~lp = - R f~2 cos(=( - 0 )up 
and 

}'1~ = Rf]Z sin(:( - 0 ) u ~ .  

Thus,  the absolute acceleration can be formulated, taking 
into account the new formulation of  the ~,~ component,  as 
following 

'~a = [ - R ~ 2  COS(~ - -  0 ) - -  rw2]u. 
+ Rf~ 2 sin(~ -- 0 )u a. (C1) 

(D)  Cartesian Expressions o f  the Detachment  
Velocity and Detachment Position 

The expression of the absolute velocity is given by 
equation (B5). Taking into account that, at the first detach- 
ment event, 0 d = n/2 and sin(~d)= --w2r*/~2R (Fig. A3), 
the expression of  the detachment velocity V d is 

V d = [--Rf~ + r*w ( - -w2r*/~R)]I  -- r*w cos(~a) J. (D1) 

'W 01 

I 

J 

UO 

lc~ / 

Y 
1 

~=-n-(a-O) 

I 

? lp 

Fig. A2. Decomposit ion of  the ball absolute acceleration. 
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Fig. A3. Absolute velocity and ball position at the detachment and collision events. The various vectors 
are explained in the text [15]. 
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Fig. A4. Ball position and absolute acceleration at the second detachment event. 
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The detachment velocity can be decomposed into two 
components Vd~ along the "X"  axis and Vd. ,, along the 
"Y" axis such as 

Va~ - [ - R ~  + r*wC]I 

and 

Vdy = - [ r * w  (1 - C2)°¢]J. (D2) 

Above the detachment event, O M  = R [cos(0 )I + sin(0 )J] 
+ r* [cos (~ ) l+s in (a ) J ] .  Taking into account the same 
above mentioned detachment conditions, the vectorial 
" M "  point position OMd, will be as following 

O M  d - r * cos(%) I + [R + r* sin(~ d)] J. (D3) 

This vectorial position can be decomposed into two com- 
ponents OMd,. along the "X"  axis and OMd, along the 
" Y "  axis such as 

OMdx -- r*(l -- C2)°5I 

and 
OMa, = (R + r * C ) J  (D4) 

with C = sin(%). 

( E)  Calculat ion o f  the N o r m a l  and  Tangent ia l  

Velocities at  the Collision Event  

As l - cos(~)up - sin(7)u~ and J - sin(e)up + cos(e)u,, 
the collision velocity given by equation (D1), will be 

V~ = {( R ~ +  r*wC)cos(~)  

- r*w (1 - C 2)o.5 sin(e)}up 

- { (  R ~ + r * w C ) s i n ( e )  

+ r*w (1 - C 2)o.5 cos(e)}u~. (El) 

This latter can be easily decomposed into two components 
V~,, the normal velocity and Vc~, the tangential velocity 
(Fig. A3) such as 

Vc~, = { ( - R ~  + r*wC)  cos(a) 

- r*w (1 - C2) °s sin(a)} up (E2) 

Vc~ = - { ( - R 9 2  + r*wC)  sin(~) 

+ r*w( l -CZ)°~cos (~ )}u= .  (E3) 


