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Abstract-Based on kinematic modelling of the modified horizontal rod mill (MHRM), the kinematic 
equations giving the velocity and the acceleration of the rod in the cylinder of the mill are given. The 
kinetic energy transferred at the collision event, the shock frequency and the injected shock power are 
also calculated. Comparison of calculations to some prior experimental results confirms our assumption 
published in earlier works which states that neither the shock energy nor the shock frequency separately 
taken into account, govern the end product but only the injected shock power is responsible for the 
microstructure and phases present in the processed powder. 

1. INTRODUCTION 

Results from mechanical alloying (MA) are numer- 
ous. Formation of amorphous phase and intermetal- 
lies can be obtained by milling pure elements or 
elemental metal ribbons [l]. MA is also a technique 
for alloying non-miscible materials and for formation 
of supersaturated solid solutions [2-lo]. The process 
is inherently flexible. So, it is reasonable to expect it 
to increase in importance. However, there has been 
little attempt to analyse it in a manner that would 
establish predictive capabilities for it, or at the least 
determine the physical parameters governing the 
phase transitions under the dynamical mechanical 
solicitation induced by milling. 

Maurice and Courtney [l 1, 121 try to give an 
approach defining the geometry and the basic mech- 
anics of the powder-work piece interaction for sev- 
eral common devices used for MA, since this 
information allows pertinent parameters of the pro- 
cess (e.g. impact velocity, powder material volume 
impacted, time between impacts, etc.) to be identified 
in terms of machine characteristics and process oper- 
ating parameters. In the above-mentioned work, two 
configurations were considered-a vertical mill such 
as the szegvari attritor and a vibratory mill. The same 
author [13, 141 developed a model of mechanical 
alloying, applicable to a single collision event involv- 
ing ductile species. R. W. Rydin et al. [ 151 studied the 
motion of grinding media and powder in an attritor 
canister by means of filming the agitated charge and 
frame-by-frame scrutiny of the footage. 

Burgio et al. [16], by taking into account the 
influence of the ball radius, the ball mass and the 

number of balls, correlate the milling operating con- 
ditions and the powder end product in a “Fritsch 
Pulverisette PS ball mill. The shock frequency was 
assumed to scale with the relative velocity w, 
(a+ = w, - Q, with w, and fip respectively the vial and 
the disk rotation speeds). Magini [17] states that the 
kinetic shock energy released by the ball into the 
powders is equal to the difference between the poten- 
tial energies before and after the collision event of a 
ball on a flat surface. 

We have reported in previous work [18, 191, 
based on a mathematical treatment of the mechanical 
alloying process in planetary ball mills and exper- 
imental results on the ball milled end product of the 
Ni,,Zr, compound, that neither the kinetic shock 
energy nor the shock frequency, taken separately, 
governs the end product. In other words, we show 
that only the mechanical injected shock power is 
responsible for the structural state of the end powder 
product. 

The aim of this paper is to prove that, even when 
using a different device for milling (i.e. a modified 
horizontal rod mill), the assumption of the mechan- 
ical injected shock power controlling the structure of 
the processed powder remains true. 

The purpose of this paper is thus to report the 
details of the mathematical treatment of the mech- 
anical alloying in a modified horizontal rod mill 
(MHRM) and to compare experimental results with 
calculated predictions. As previously mentioned 
[18, 191, since the kinetic shock energy consumption 
has not been well defined previously, and to simplify 
the problem, the following assumptions are made in 
the numerical calculations 
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?? the kinetic shock energy is released totally into 
the powders. 

Other assumptions, which are justified later in the 
text, are 

?? there is not relative motion between the rod and 
the cylinder wall prior to the departure point, i.e. 
the rod does not slip or roll 

?? after the flight duration, the rod is newly 
attached to the wall. 

2. MATHEMATICAL TREATMENT OF THE 
PROCESS TAKING PLACE IN A MODIFIED 

HORIZONTAL ROD MILL 

In the approximation of collision in a planetary 
ball mill, McCormick et al. [20] have improved the 
basic model of Burgio et al. [I 61 by considering a “slip 
factor” that makes the trajectory of the flight ball 
rather different from the one calculated without 
considering this effect. Ball motion is recorded using 
a high speed video camera [20]. Le Brun et al. 
[21] confirmed this by a videotape recording of the 
trajectory-type. Rydin et al. [15] studied the 
motions of grinding media and powder in an attritor 
canister by means of filming the agitated charge and 
frame-by-frame scrutiny of the footage. 

If the process taking place in planetary ball mills 
has been more or less previously studied, few exper- 
imental or theoretical studies have been done for the 
horizontal ball or rod mills. Maurice and Courtney 
[l I] have carried out preliminary calculations of the 
ball impact velocity and the released kinetic shock 
energy in a classical horizontal ball mill. Calka et al. 
[22] have done some improvements of the horizontal 
mill geometry, i.e. the ball movement during the 
milling process is confined to the vertical plane by the 
cell walls and is controlled by an external magnetic 
field. The intensity and direction of the field are 
externally adjusted allowing the ball trajectories, im- 
pact energy and the shearing energy to be varied in 
a controlled manner. 

In this section, rod motion in the cylindrical mill 
during one cycle is studied by taking into account the 
above-mentioned simplification assumptions. Thus, 
the coordinates of the rod, when it is stuck to the 
inner cylinder surface and after leaving the inner 
cylinder surface (detachment event), are calculated. 

The application of the fundamental dynamic prin- 
ciple gives the rod detachment condition which allows 
calculation of the rod detachment position and de- 
tachment velocity. These latter parameters are used in 
order to calculate the motion of the rod from the 
detachment event up to the collision one. 

The rod collision velocity gives the kinetic energy 
released from the rod to the powders. The time 
needed between two collision events or two detach- 
ment events gives the shock frequency. 

The modelling of the MHRM is given in Fig. Al 
and explained in paragraph A of the Appendix. 

2.1. Absolute velocity and absolute acceleration of the 
rod before the detachment event 

The adopted reference (0, I, J, K) to perform these 
calculations is a Cartesian one, with “0” the cylinder 
centre. The rod is illustrated by the material “M” 
point. Based on Fig. Al, the M point position is 
defined as 

OM = RU, = R[cos(O)J + sin(B)K]. (1) 

The absolute velocity V, of the M point is given by 
the derivative of the OM vector [equation (l)] with 
respect to time. The final expression of the absolute 
velocity V, and its amplitude are given in paragraph 
B of the Appendix as follows 

V, = Rw[ - sin(8)J + cos(B)K] (2) 

IIV, II = Rw. (3) 

The absolute acceleration ya of the point M ob- 
tained by the derivative of its absolute velocity V, 
with respect to time is 

ya = - Rw*[cos(f?)J + sin(B)K] (4) 

or along the U, vector as 

ya= -Rw2U P (5) 

its amplitude is given by 

ll~a II = Ro*. (6) 

2.2. Calculation of the detachment velocity and the 
detachment acceleration 

To eliminate the slipping and/or the rolling be- 
tween the rod and the inner cylinder wall, conven- 
tional horizontal rod mills are modified. In particular, 
a lifting system consisting of two fixed impellers, in 
opposite directions, on the right and the left mill 
covers is added. Figure A2 of the Appendix shows the 
front and a left side view of the modified horizontal 
rod mill (MHRM) with 

(1) 
(2) 

(3) 

(4) 

the cylinder 
impeller permitting lifting of the rod (lifting 
system) 
the rod used instead of the balls in the plane- 
tary ball mill 
two covers on which are fixed the impellers 
(one impeller on each cover). 

Based on fundamental dynamics, the resultant of 
the external forces acting on the rod is equal to the 
product of its mass by its acceleration. The physical 
forces applied to the rod are its weight (gravitational 
action), the cylinder and the impellers reactions. In a 
reference frame fixed to the rod, the latter is con- 
sidered fixed. So, the rod dynamic equilibrium is 
stipulated by 

-m.y,+R+P=O (7) 

with R the cylinder and the impeller reactions and P 
the rod weight. 
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The resolution of equation (7) can be done easily 
by writing the rod weight, the impeller and the 
cylinder reactions as a function of the U, and the UB 
vectors. These calculations are developed in para- 
graph C of the Appendix. By combining equations 
(Cl) and (C2) of the Appendix and equation (7) the 
following equations result 

U,+mRwZU,=O (8) 

Ug=O (9) 

with R, the cylinder reaction and R, the impeller 
reaction. 

For detachment of the rod from the inner cylinder 
wall, equation (8) = 0; i.e. 

(10a) 

Equation (10a) can be simplified as 

2 

sin(B,) = 5. 

Taking into account the finite rod radius, equation 
(1 Ob) becomes 

sin(e,)ztR -r)02, UOC) 
g 

The rod detachment angle Od and the rod detach- 
ment condition, corresponding to a revolution cylin- 
der speed o, are defined by equation (10~). 

When the cylinder rotation speed >Jn, 
detachment does not happen. the rod remains 
“stuck” to the inner cylinder surface. 

2.3. Calculation of the collision point position 

To obtain the time between the detachment and the 
collision events, a computer solution is utilised. 

After detachment, the rod experiences only a grav- 
itational force. Thus its trajectory conforms to that of 
a projectile, i.e. it is a parabola in the (0, Y, Z) plane 
materialised by the Cartesian referential (0, J, K). Its 
motion can be decomposed into two motions 

(1) a uniform linear motion with a constant vel- 
ocity V,, and an initial position OM+., in the 
horizontal direction 

(2) an accelerated motion with an initial velocity 
Vdz, an initial position OM,, and an accelera- 
tion g = -gK, in the vertical direction. 

Its motion expression at a “t” instant after the 
detachment event is 

OM=fgt2+V,t +OM,=yJ+zK (11) 

such as 

y = (R - r)cos(Od) -(R - r)w sin(Q,)t (12) 

z = -fgt* + (R - r)w cos(O,)t + (R - r)sin(6,). 

(13) 

Details are given in paragraph E of the Appendix. 
The first collision between the rod and the inner 

cylinder surface occurs when the amplitude of the 
vector position OM becomes equal to the fictive 
radius (R - r). So the collision condition is expressed 
as following 

dm = (R - r). 

The numerical approach consists of 

(14) 

(1) calculation of the angle detachment value (0,) 
[equation (SC)] 

(2) increment time in steps “At” (ns) 
(3) calculation of the “y” and “z” coordinates of 

the vector position OM [equations (12) and 
13)]. If the collision condition [equation (14)] is 
fulfilled, the collision point coordinates values 
0, and z) along the “Y” and the “Z” axes and 
the time “tc” needed between the detachment 
event and the collision event are determined. 

2.4. Calculation of the kinetic energy by one hit 

The kinetic impact energy is given by 

Ek = fm IIV, I/*. (15) 

The amplitude of the collision velocity (see paragraph 
F of the Appendix) is 

IIV, II 

= [(R - r)w sin(O + [ -gt, + (R - r)w COS(Q,)]~ 

(16) 

with m the rod mass, R the cylinder radius, r the 
rod radius, (3, the detachment angle, w the cylinder 
rotation speed, t, the time between detachment and 
collision event and g the gravitational acceleration. 

2.5. Calculation of the shock frequency 

Following the collision event, the rod rolls on the 
inner cylinder surface until meeting the impellers 
(lifting system) which lifts it up to the detachment 
position. 

During rolling on the cylinder surface, the rod 
interacts with the powder charge, deforming it fur- 
ther as well as causing fracture and welding of the 
particles within it. In order to simplify the problem, 
we do not consider these post-impact effects in our 
calculations; we consider only the collision effect. 

The impact frequency is given only by the cylinder 
rotation speed since the geometrical construction 
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permits only one impact per cylinder revolution. It is 
given as follows 

f=E (17) 

with w cylinder rotation speed expressed in rd s-l. 
This shock frequency corresponds to one rod. So 
when operating with a given number of rods (N), the 
impact frequency is equal to the product of equation 
(17) and the number of rods in the mill corrected by 
a parameter accounting for interactions among the 
rods [16]. 

So as the cycle period, which is equal to a cylinder 
revolution period, is given by the sum of the flight 
duration, the rolling duration and the sticking period, 
the flight time does not give the shock frequency but 
it gives the rolling and the sticking periods. 

2.6. Calculation of the shock power 

The power released from the rod to the powders is 
the product of the frequency with the kinetic energy 
[18, 191. It is given by 

P =fEk. (18) 

3. NUMERICAL CALCULATION RESULTS 

The so-called MHRM has a 45 mm diameter and 
a 180 mm length. The calculations of the kinetic 
shock energy, the shock frequency and the shock 
power are carried out as a function of cylinder 
rotational velocity for different values of the rod 
radius. The calculations are carried out for only one 
rod. The hardened steel rods have a 150 mm length 
and a radius ranging from 7.5 up to 14.5 mm (the rod 
mass is 244 g for a 7.5 mm radius rod). 

-50 I I ’ ’ ’ 1 ’ ’ ’ ’ ’ ’ ’ ’ I ’ ’ I ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ I ’ ’ ’ ’ ’ ’ ( 
-50 30 -10 10 Xl 50 

Y-Axis (mm) 
Fig. 1. Calculated flight trajectories of a 7.5 mm radius rod 
corresponding to different values of cylinder rotation speed. 
The cylinder rotation speeds are expressed in revolution per 

minute (rpm). 
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Rod radius = 7.5 mm 

0.00 " J ” “‘I’ I " 1 "'I ” ” ” 
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CylinderTotation speed (r.p.m.) 
150 

Fig. 2. Flight time variation for a rod with 7.5 mm radius 
as a function of the cylinder rotation speed. 

Figure 1 shows the 7.5 mm radius rod trajectories 
for different values of cylinder rotational velocity. 

Based on Fig. 1, the rod flight distance increases as 
function of the cylinder rotation speed “IX” to attain 
a maximum flight and then decreases, becoming zero 
for the cylinder rotational velocity greater than the 
critical one above which detachment cannot occur 
(paragraph D of the Appendix). Consequently, the 
flight time (obtained through computer analysis) 
increases with w reaching a maximum value and then 
“decreases” to zero for rotational velocities greater 
than the critical one. Since the rod absolute velocity 
amplitude is a function of flight time, its variation 
with the cylinder rotation speed behaves similarly. 
Figure 2 shows the flight time variation for a rod with 
7.5 mm radius as a function of the cylinder rotation 
speed. 

Figure 3 shows the variation of the kinetic shock 
energy for one impact as function of the cylinder 
rotation speed. The calculations are appropriate for 
one rod. 

Based on Fig. 3, we firstly remark that the kinetic 
shock energy increases with rod radius (the mass 
scales with r@ and secondly that, for all rod radii, the 
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Cylinder rotation speed (r.p.m.) 
Fig. 3. Variation of the kinetic shock energy as function of 
the cylinder rotation speed for different rod radius values. 
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kinetic impact energy reaches a maximum value at an 
optimal cylinder rotational speed (= 118.6 rpm for 
the physical characteristics of the used MHRM) and 
then decreases precipitously as the critical rotational 
velocity is approached. 

As the dragging system allows only one shock per 
revolution, the shock frequency is proportional only 
to the cylinder rotational velocity. Consequently, the 
injected shock power follows the same variation as 
the kinetic shock energy when varying the cylinder 
rotation speed. 

4. APPLICATION TO THE Ni,,Zr, COMPOUND 

3.8g of moulten spun ribbon pieces 
(8 mm x 10 mm x 50 pm) of mean composition 

Ni,,,,Zr.+l.z (at.%) corresponding to the Ni,,Zr, 
intermetallic compound were introduced into the 
mill. The mill is loaded with six steel rods (15 mm 
diameter, 150 mm length and 244 g mass). The cylin- 
der is sealed with a Teflon O-ring. After 48 h of 
milling, the microstructural state and the phases 
present in the processed powder do not change. A 
numerical method “ABFfit program” was used to 
analyse the X-ray diffraction (XRD) patterns and to 
obtain the position and the full width at half height 
of the various peaks. The ball milling conditions 
are rod radius = 7.5 mm, o = 118.6 rpm, f= 1.9 Hz, 
P max = 0.38 Wand Ekmax = 0.19 J/hit with w the cylin- 
der rotation speed,fthe shock frequency for one rod, 
P max the injected shock power for one rod and 
Ekmax the kinetic impact energy associated with one 
impact. 

If the interaction between the “N” different rods 
does not significantly alter the individual motion of 
each rod the impact frequency will be N times the 
same frequency for an individual rod. Consequently, 
as six rods are used in the present work, the injected 
shock power will be equal to 2.29 W, i.e. 0.6 W/g for 
3.8 g mass of initial elemental powder. 

In studies dealing with the physics of MA in the G5 
and G7 planetary ball mills [18, 191, we have pre- 
viously reported that, for an injected impact power 
ranging from 0.4 up to 0.8 W/g, MA induces a 
formation of pure amorphous phase when starting 
from a prealloyed Ni,,Zr, intermetallic compound or 
from a mixture of Ni,,,Zr,,., (at.%) elemental pow- 
ders. Figure 4 shows the dynamic phase diagram 
obtained for the G5 and the G7 planetary ball mills 
[18, 191. Based on this, if the injected shock power is 
the unique physical parameter governing the far from 
equilibrium phase transition as proved in [ 18, 191, 
0.6 W/g injected shock power, developed by the 
so-called MHRM, will be suitable for amorphous 
phase formation. 

Figure 5 explains the deconvolution of the 
[30”, 75”] angular domain (in 20) of the rod milled 
powders’ XRD pattern (Fe& radiation with 
1 = 0.19373 nm). Based on this figure, a superposi- 
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Fig. 4. Injected shock power as function of the disk and vial 
rotation speeds for the G5 (---) and G7 (---) planetary 
ball mills. The vial rotation speed values (in rpm) are 
referred by the numbers l-5 written near each corre- 
sponding curve: 1 = 150; 2 = 250; 3 = 350; 4 = 500; and 

5 = 600 rpm [18, 191. 

tion of two intense diffuse halos (dashed Gaussian), 
relative to the first and the second diffuse halo of an 
amorphous phase, and some weak crystalline peaks 
is seen. The diffuse halos are located at angular 
positions equal to 40.5 and 55.5” (in 2Q), respectively. 
Their full width at half height (FWHH) are respect- 
ively 7.2 and 10.6”. In this work, the XRD pattern is 
analysed by a very high performance program 
(ABFfit) which allows the detection of peaks having 
very weak intensities. In addition to only an amor- 
phous contribution detected by a conventional pro- 
gram and reported in a later paper [23], we give here 
evidence for the existence of very small amount 
of crystalline contribution (non-dashed Gaussian). 
These crystalline peaks are relative to the Ni,,Zr, 
compound. The angular positions and the FWHH 
of the two diffuse halos are different from those 
reported by Gaffet and Yousfi [24]. The accuracy of 
the deconvolution of Fig. 5 is very good and all 
other scenarios of crystalline vs amorphous phases 
lead approximately to the same result. The good 
accuracy of the results obtained by this numerical 
program has been checked by Gaffet and Harmelin 

1251. 
We assume that the contact area of the impeller is 

not large enough to drag the six rods. Thus, the rods 
located far from the impeller surface undergo a 
rolling motion and do not contribute to the shock 
frequency and thus to the injected shock power. Only 
the rods which attain the detachment position and 
experience a gravitational force after detachment, 
affect the end product. Consequently, the injected 
shock power is less than 0.6 W/g and a mixture of 
large amount of amorphous phase and small amount 
of crystalline phase is obtained. So, to obtain a pure 
amorphous phase, we increase the impeller area in 
order to insure the lifting of all the rods. 

We state that whatever the used device to accom- 
plish the milling process, the injected shock power is 
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18.80 

11.50 

couDs = ~~103 
z*Tlleta = Xx100 

Fig. 5. Deconvolution of the rod milled power XRD pattern corresponding to a 0.6 W/g injected shock 
power, in an angular position ranging from 35 up to 75” (in 28). The initial states are formed by pre- 
alloyed Ni,,Zr, intermetallic compound. The crystalline peaks, relative to the Ni,,Zr, intermetallic 
compound, reported in the figure are [022] (35.8”), [401] (38.5”) [113] (39.8”) [402] (44.2”), [042] (56.5”) 

and [441] (65.0”). 

the unique physical parameter governing the far from 
equilibrium phase transitions in mechanical alloying. 
In the case of the prealloyed Ni,,Zr, intermetallic 
compound, a pure amorphous phase can be formed 
only when the injected shock power ranges from 0.4 
to 0.8 W/g. 

Eckert et al. [26] assume that the temperature 
increase during mechanical alloying is a very import- 
ant parameter of the process. They conclude that 
partial crystallisation of the formed amorphous phase 
can occur during mechanical alloying at high milling 
intensities. Thus the crystallisation of the formed 
amorphous phase can not simply be caused by the 
milling but must be an effect of excess heating during 
mechanical alloying. Based on the procedure pro- 
posed by Schwarz and Koch [27], they estimate the 
peak temperature reached within the powder particles 
during milling. They obtained AT = 130, 247 and 
407°C for ball milling conditions corresponding to 
the 3, 5 and 7 industrial setting. Since an isothermal 
anneal of the amorphous powders at 400°C for only 
5 min is sufficient to produce partially crystallised 
materials with a similar X-ray diffraction pattern to 
that obtained for the Ni,,Zr,, powder milled for 60 h 
at the industrial setting 7, the authors [26] conclude 
that the actual temperature of the individual particles 
during mechanical alloying can in fact be rather 
high-at least high enough to cause crystallisation of 

formed amorphous particles. Miller et al. [28], using 
microsecond time-resolved radiometry, observed 
temperature increases of the order of 400-500°C 
upon impacting NaCl crystals. 

At first glance, it is important to note that these 
temperature rises can induce crystallisation of the 
phases formed during processing and that the crys- 
talline phases obtained for high shock power values 
(Fig. 4) can be the result of a partial crystallisation 
of the formed amorphous phase due to the excess 
of heating as assumed in our previous works 
[18, 191. 

Second, we assert that if the impact power is lower 
than a minimum value, mechanical alloying induces, 
after a long ball milling duration, only a refinement 
of the powder microstructure and an increase of the 
defect quantity until reaching a steady state which is 
not able to be destabilized into another structural 
state, whereas, if the impact power is greater than a 
minimum power value, mechanical alloying induces a 
refinement of the powder microstructure and an 
increase of the defect quantity at a rate able to induce, 
even in the earlier stages of MA, a mixture of 
structurally transformed phase and initial phase. In 
the later case, the steady state can result, depending 
on the value of the impact power, in a mixture of 
structurally transformed phase and initial phase or 
in a homogeneous structurally transformed phase. 
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Table I. Documented [27] and calculated values of the kinetic energy, the shock frequency and the shock power for the G5 and G7 planetary 
ball mills [18, 191 and the modified horizontal rod mill (MHRM) (this work) 

Horizontal 
Vibratory mills Planetary ball mills mills 

Velocity of 
the ball 
(m/s) 

Attritor 
1271 

o-o.8 

Pulv. 0 SPEX Pulv. P5 
[271 v71 1271 

0.14-0.24 <3.9 2.%4 

[1BsT:9, [18$):9] 

0.246.58 0.28-I 1.24 

MHRM 
(this work) 

G1.247 

Kinetic 
energy 
(10m3J/hit) 

Shock 
frequency 
(Hz) 

Power 
(W/g/ball 
or rod) 

<lo 

> 1000 

<O.OOl 

3-30 <I20 I Is400 

15-50 200 -100 

0.0054.14 <0.24 0.014.8 

0.4303.2 0.5>884 IL190 

5.c92.4 4.5-90.7 I&2.4 
(5 balls) (5 balls) (1 rod) 

W.56 O-l ,604 WI.1 

The structural and microstructural states remained 
unchanged when the elastic energy storage in the 
powder becomes impossible, i.e. when the milling 
process can not induce more fragmentation of the 
powder particles and a greater increase of the defect 
densities. 

Really only a fraction of the impact energy is 
consumed by the powder to achieve the phase 
transition. The other fraction serves to heat the 
powder, the ball and the vial surface, i.e. the 
actual power experienced by the powder scales 
with the shock power. The scaling constant, small 
compared to unity, depends only on the powder, 
the ball (the rod) and the vial materials and should 
be the same for different devices, i.e. independent 
of the milling device type. On this basis, the 
correlation between “shock power” and structure 
would be reasonable to be extrapolated from one 
device to another. So, the levels of the three 
domains of the dynamical phase diagram shown 
in Fig. 4 may translate but they do not change 
their shape and, whatever the shock energy con- 
sumption percent, the amorphization proceeds 
above a minimum power input and below a certain 
maximum power input. 

Chen et al. [29], report results documented in 
the materials literature concerning the kinetic en- 
ergy, the shock frequency and the shock power for 
three most common devices: the Attritor ball mill, 
the planetary ball mill (Fritsch “Pulverisette PS’) 
and the vibratory grinder (e.g. SPEX Shaker mill). 
Table 1 gives the documented values [29] and the 
calculated values of the kinetic energy, the shock 
frequency and the shock power for the G5 and 
G7 planetary ball mill [18, 191 for the horizontal 
rod mill (this work). 

Based on Table 1, the G5 shock power domain 
encompasses all the other devices shock power do- 
mains. Moreover, it has been reported by Martin 
and Gaffet [30], that the ball milling power input 
domain overlap some typical mechanical straining or 
irradiating power input domains. 

5. CONCLUSIONS 

Based on a mathematical treatment of the pro- 
cess taking place in a MHRM, and employing 
simplifying assumptions, the kinematic equations 
giving the velocity and the acceleration of a rod in 
the cylinder of a modified horizontal rod mill are 
given. The kinetic energy transferred at the collision 
event, the shock frequency and the shock power are 
also calculated. 

We newly prove that whatever the used device to 
accomplish the milling process, the injected shock 
power is the unique physical parameter governing 
the far from equilibrium phase transitions in mechan- 
ical alloying. For the case of the prealloyed Ni,,Zr, 
intermetallic compound, a solely amorphous phase 
can be formed only when the injected shock power 
ranges from 0.4 to 0.8 W/g. 

Modified, as well as conventional, horizontal rod 
mills are suitable for use only in a specified cylinder 
rotation speed domain, i.e. for cylinder rotational 
velocities less than those that “pin” the rods to the 
mill wall. 

The analysis described here will be improved by 
taking into account the effect of rod rolling on the 
inner cylinder surface. Moreover, more searches of 
the mechanical alloying at the local level are needed 
to have the really released shock energy and the free 
energy excess in connnection with the injected shock 
power. This will be reported in a next paper. 
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APPENDIX 

(A) References and “M” Point Position Expression 
Figure Al shows the rod position M at time t with, 

R = the cylinder radius (m), r = the rod radius (m). m = the 
rod mass (kg), M, a material point representing the rod 
position in the cylinder, 0 = wt, the cylinder rotation angle 
with UJ = 01, (0, I, .I, K) a direct Cartesian referential and 
(0, U,, U,) a cylindrical referential such that U,//R and 
U,IU,. Based on Fig. Al 

OM = RU,. (Al) 
OM = R[cos(QJ + sin(O)K]. (A2) 

(B) Calculation of the Absolute Velocity and the 
Absolute Acceleration 

The absolute velocity V, of the point M is given as follows 
v = d(OM) d[R(cos@)J + si@)K)] 

a dt dt (Bl) 

V, = g [cos@)J + sin(QK] + R g [ - sin(0)J + cos@)K]. 

W) 
Thus, as dR/dt = 0 and dO/dt = w, the expression of the 
absolute velocity is simplified to 

V, = Ro[ - sin(B)J + cos(B)K] (B3) 
or as U, = - sin(0)J + cos@)K, the final expression of the 
absolute velocity is given by 

V, = RoU,. (B4) 
The absolute acceleration ya of the point M, obtained by 

the derivative of its absolute velocity V, with respect to time, 
is given as follows 

V,) d(RoU,) 
Ya=dt=- dt (B5) 



ABDELLAOUI and GAFFET: THE PHYSICS OF MECHANICAL ALLOYING 133 

as R and w are constant, expression (B5) will be 
simplified as 

y 
a 

= Rw d[ -sin(B)J + co@)K] 
dt (B6) 

ya = Rw z [ -cos(@J - sin(B)K] (B7) 

as U,=cos(QJ+sin(B)K and dO/dt =o, the final 
expression of the absolute acceleration is given as 

ya = -R&J,. (B8) 

(C) Decomposition of the Impeller and the Cylinder 
Reactions 

Figure A2 shows the front view and the left side view of 
the modified horizontal rod mill (MHRM) with 

(1) the cylinder 
(2) impeller permitting the “lifting” of the rod (lifting 

system) 
(3) the rod used 
(4) two covers on which are attached the impellers (one 

to each cover). 

Based on this figure, the expression of the cylinder and the 
impeller reaction R and the rod weight as function of the U, 
and U, vectors is given as follows 

R=R,+R, (Cl) 

P=P,iP, (C2) 

with R, = -$,Up the cylinder reaction, R, = R,U, the 
impeller reaction, P, = - mg cos(s /2 - 0)U, the normal 
component of the rod weight and P, = --mg sin(n/2 - 0)U, 
the tangential component of the rod weight (R,, R, 2 0). 

(0) Condition of Permanent Sticking of the Rod on 
the Inner Cylina’er Surface 

We now assume that no detachment occurs up to an 
angular rod position 0 such that 0 = n/2. In this case, the 
U, vector will be equal to the K vector and, taking into 
account the finite rod radius, equation (8) will be written as 

R,+m((R-r)oZ-g)K=O. (Dl) 

Suppose now that (R - r)co2 > g. In this case, the effective 
centrifugal force m((R - r)02 - g)K always exceeds zero 
and consequently no detachment event occurs. Thus, if the 
cylinder rotation speed is greater than a critical value equal 
to ,/z, the rod remains “stuck” to the cylinder inner 
surface and no collision event can happen. So, we show that 
in distinction to the planetary ball mill, the modified hori- 
zontal rod mill (MHRM) is fruitful only for a specified 
cylinder rotational velocity range. 

(E) Cartesian Expression of the Detachment Velocity 
and Detachment Acceleration 

The expression of the absolute rod velocity is given by 
equation (B3). Taking into account that the detachment 
event occurs when the rod position 0 is such that 
sin@,) = (R - r)o*/g, the expression for the detachment 
velocity V, is given as 

V, = -(R - r)w sin(0,)J + (R - r)w cos(0,)K. (El) 

The detachment velocity can be decomposed into two 
components V,, (along the Y axis) and V, (along the Z axis) 
such that 

and 

V,, = -(R - r)w sin(0,)J 

V,, = (R - r)w cos(B,)K. (E2) 

The vectorial position rode above the detachment event 
is given by equation (A2). At the detachment event, and 
taking into account the rod radius, the vectorial M point 
position OM, is 

OM, = (R - r)[cos(O,)J + sin(B,)K]. (E3) 

This position can be decomposed into two components 
OM,, (along the Y axis) and OM,, (along the Z axis) such 
that 

and 

OM,, = (R - r)cos(e,)J 

OM, = (R - r)sin(&)K. 

I 
I 

(E4) 

Fig. A2. Front view and left side view of the MHRM. 
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(F) Calculation of the Impact Velocity dz 
V (z,,) = dt K = [-gt + (R - r)o cos(B,)]K. (F2) 

The collision velocity V, is given by the derivation of the At the t, time corresponding to the collision event, 
rod vector position OM after the detachment event. It can 
be decomposed into two components: Vcr,,) along the Y axis 

amplitude of the collision velocity is given by 

and Vckr) along the 2 axis such as IIV, II = IIVWJ,) II2 + IIv~z,r,) IV (F3) 

--J= -(R -r)o sin(8,)J dv V 
IIV, 11 = [(R - r)w sin( + [-gt, + (R - r)o cos(e,)]*. 

(Y>O - dt (Fl) 
(F4) 


