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X-ray diffraction line profile analysis of iron ball milled powders
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Abstract

The size of coherently diffracting domains and the lattice strain of iron ball milled powders have been determined according to various
models. The Williamson–Hall plot, the Voigt model and the Warren–Averbach model have been employed. The analytical expressions of the
size and strain Fourier coefficients have been extracted from the integral breadth using the so-called “double Voigt” method. The shock power
generated in the planetary ball milling equipment employed has been calculated for each synthesis condition and used to plot the size and the
strain. The nature (screw or edge) and the density of the dislocations have been determined for each powder under investigation.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Nanocrystalline materials obtained by high-energy ball
milling are of great interest since it is known that those mate-
rials may exhibit different physico-chemical properties than
the coarse grain similar materials. Various equipments are
available to perform ball milling experiments such as attri-
tor, shake miller and planetary ball miller. This last device
is now largely employed to obtained nanocrystalline pow-
ders. In order to correlate the microstructure of such powders
with their properties it is necessary to use methods allowing
meaningful results about size and strain.

X-rays diffraction line profile analysis (LPA) is an adapted
tool to characterize the behavior of a metallic powder un-
der various high-energy ball milling conditions. In almost
all the works related to ball milling process, authors give
results about the size–strain analysis and they often corre-
lated those results with physical properties (mechanical or
magnetic) of the resulting materials. Among all the methods
existing to extract the size of the coherent diffracting do-
mains from diffraction peak the Scherrer relation[1] is still
the most employed nowadays[2–7]. Scherrer gave a defini-
tion of the “apparent” domain size that is a volume-weighted
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quantity:

t = Kλ

FWHM
cosθ (1)

whereK is a constant close to unity, FWHM corresponds to
the full width at half maximum of the peak andθ the Bragg
angle of the [h k l] reflection.

Later Wilson [8] defined an “integral breadth apparent
size” that is also a volume-weighted quantity:

〈D〉v = Kλ

β
cosθ (2)

where the integral breadthβ = A/I0, A being the peak area
and I0 the height of the observed line profile. In these two
relations the peak broadening is attributed to the effect of
the diffracting coherent domain size.

If the broadening is now due to the sole strain effect, the
relations defined by Stokes and Wilson[9] can be applied:

η = β cotθ (3)

e = η

4
= β

4
tanθ (4)

whereη is the “apparent” strain ande the maximum strain.
In almost all cases line broadening occurs due to simulta-

neously size and lattice distortion effects. One way to sepa-
rate these two effects has been developed by Williamson and
Hall [10] and is now known as the Williamson–Hall plot.
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They proposed to plotβ for all the reflections of the sam-
ple, expressed in terms of reciprocal unit (β∗ = β cos(θ)/λ),
as a function ofd∗ (d∗ = 2 sin(θ)/λ). Using a linear ex-
trapolation to this plot, the intercept gives the particle size
(K/〈D〉v) and the slope gives the strain (2η). This method
can be used quantitatively only in a first approximation due
to the fact that the assumption that broadening functions
(size and strain) are Cauchy curves is never confirmed in
practice. This method is still largely employed for the ball
milled samples[11–16]and program softwares are available
to perform Williamson–Hall plot[17,18].

Langford[19] proposed to use the Voigt function to fit the
diffraction line profile. The Voigt function is a convolution
of a Lorentzian (L) function and a Gaussian (G) function.
De Keijser et al.[20], in the case of a single line analysis,
assumed that the Lorentz component of the line profile is
solely due to the crystallite size and that the Gaussian con-
tribution arises from the strain. Hence the apparent domain
size for ah k l reflection can be deduced using the relation
(2) replacingβ by βL and the strain is obtained using the re-
lation (4) replacingβ byβG, βL andβG being the Lorentzian
and Gaussian parts of the integral breadth.β can also be
used in the Williamson–Hall plot to reveal any structural
imperfections[21].

It is also possible to separate the effects of particle
size and microstrain on the line broadening using the
Warren–Averbach method[22]. In this method, it is shown
that the cosine Fourier coefficientsAL of the profile are
the product of the size coefficientsAS

L and the distortion
coefficientsAD

L:

AL = AS
LA

D
L (5)

L is the Fourier length, defined asL = na3, wheren is the
integer anda3 the unit of the Fourier length in the direction
of the diffraction vectorg:

a3 = λ

2(sinθ2 − sinθ1)
(6)

where the line profile is measured fromθ1 to θ2 andλ is
the wavelength of the X-rays. Warren has shown that the
Fourier coefficients can be written as:

lnAL(g) � lnAS
L − 2π2L2g2〈ε2

g〉 (7)

where〈ε2
g〉 is the mean square strain in the direction of the

diffraction vector. For a cubic crystal 1/g = d = a/h0
whereh0 = h2 + k2 + l2 and the last expression becomes:

lnAL(h0) = lnAS
L − 2π2〈ε2

L〉L2h
2
0

a2
. (8)

If two orders of a reflection are available we can plot lnAL
againsth2

0, the intercept ath2
0 = 0 will give the size coef-

ficientsAS
L and the slope will yield the root mean square

strain (RMSS) component〈ε2
L〉1/2. Once those coefficients

obtained we can plotAS
L againstL, Warren and Averbach

have demonstrated that the intercept of the initial slope on

the L-axis directly gives the average column length〈D〉s,
also called the surface averaged (or weighted) crystallite
size. The Warren–Averbach method is employed in the field
of ball milled materials[23–25]and is sometime compared
with the results obtained using the Scherrer relation or the
Voigt method[26,27].

In addition to the line broadening due to the particle size
and strain, there is a source of broadening due to the equip-
ment itself (slit size, penetration in the sample, imperfect
focusing. . . ). This source of broadening is called “instru-
mental broadening”. A correction for the contribution of the
instrumental broadening can be made considering that the
experimental profileh(x) is a convolution of the sample pro-
file f(x) and the instrumental contributiong(x).

h(x) = f(x)⊗ g(x) (9)

Using the properties of Fourier series, Stokes[28] demon-
strated thatf(x) could be obtained from the Fourier coeffi-
cient ofg(x) andh(x). Theg(x) profile is obtained through
the acquisition, in the same conditions as the experimental
profile h(x), of a standard sample.

Another way to have information aboutf(x) is to assume
that each function (f, g, h) is a Voigt function. The Voigt
function being a convolution of a Lorentzian (L) function
and a Gaussian (G) function, fromEq. (9)we obtain[21]:

βfL = βhL − βgL (10a)

and

β2
fG = β2

hG − β2
gG (10b)

βiG andβiL being the Gaussian and the Lorentzian compo-
nents of the integral breadth of the profilei(x).
βf is then obtained using a calibration graph[19] or by

an approximation using the relation[20]:

βfG

βf
= −1

2π
1/2k + 1

2(πk
2 + 4)1/2

− 0.234k exp(−2.176k) (11)

with k = βfL/π
1/2βfG.

Furthermore fitting the diffraction peaks by Voigt func-
tions allows the determination of the Fourrier size and strain
coefficient using the so-called “double Voigt” method[29].
The main relations in this method are:

βC = βCS + βCD
s2

s20

(12a)

β2
G = β2

GS + β2
GD

s2

s20

(12b)

with s = 2 sin(θ)/λ = 1/d being a variable in reciprocal
space.

The unknownsβCS, βCD, βGS andβGD are obtained by
plotting bothβC and β2

G as a function ofs2 for multiple
orders of a reflection. It then possible to have an analytical
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expression of the Fourier size coefficients and of the strain
ones:

AS
L = exp(−2LβCS − πL2β2

GS) (13)

〈ε2
L〉 = 1

s2

(
β2

GD

2π
+ βCD

π2

1

L

)
. (14)

In order to prevent the “hook” effect to appear the following
condition must be fulfilled:

βCS =
(π

2

)12
βGS. (15)

We have decided in this work to compare the results concern-
ing the size–strain analysis obtained from the four methods
(Scherrer relation, Williamson–Hall plot, Voigt method and
Warren–Averbach method). The choice of using the Voigt
function to fit all the diffraction peaks has also be made
knowing that all the parameters necessary to perform the
different analysis are easily obtained. We have also com-
pared those results with the data arising from the modified
Williamson–Hall plot and the modified Warren–Averbach
method. The mechanical parameters of the planetary ball
miller have been calculated to discuss the different results.

Finally, due to its high use in powder metallurgy, we have
chosen to study the evolution of the size and the microstrain
of an iron ball milled powder.

2. Experimental

2.1. Milling conditions

Fe powders are milled in a G5 planetary ball mill, this
equipment allows the variation of the disk and the vial rota-
tion speeds independently. The disk and the vial radius are,
respectively, 132× 10−3 and 21× 10−3 m. The ball radius
and the ball mass are, respectively, 7.5 × 10−3 m and 14 g,
five balls are used in each run. In order to study the effect
of the disk rotation speed, the vial rotation speed is fixed at
−400 rpm and the disk rotation speed takes the values 150,
250, 350 rpm, the milling time is then fixed at 24 h.

2.2. X-ray diffraction conditions

Data have been recorded using an X’PERT MPDθ/2θ
(Philips) diffractometer in a parafocusing configuration with
Cu K� radiation. The primary optic is equipped with Soller
slits (0.04 rad); an anti-divergence slit (1◦) and the secondary
optic is equipped with a receiving slit (0.15◦), Soller slits
(0.04 rad), a curved Si monochromator and a proportional
detector.

The acquisition conditions are listed inTable 1. The Cu
K�2 radiation was analytically suppressed from the profile
using the Rachinger method.

Table 1
Conditions for the diffraction acquisitions

h k l Standard
position (◦2θ)

Range
(◦2θ)

Step size
(◦2θ)

Step
time (s)

1 1 0 44.674 43–46.5 0.02 40
2 0 0 65.023 63–67 0.02 40
2 1 1 82.335 80.5–84.5 0.02 40
2 2 0 98.949 97–101 0.02 40
3 1 0 116.39 113.5–120 0.05 40
2 2 2 137.144 134–141 0.05 40

3. Results and discussion

Before performing the profile line analysis, we have first
calculated the evolution of the lattice parameter of the Fe
powder before and after ball milling. The lattice parameter
is determined from the average of the parameter calculated
from each diffraction peak. The results are given inFig.
1, the line represents the value of the Fe lattice parameter
(a = 2.8664 Å) given in the JCPDS database. We observe
the increase of the lattice parameter that could be due to the
surface energy of the crystals that reach high values when
the size decreases leading to the expansion of the cell.

Whatever the method employed, we have seen that the
first step of a line profile analysis is to record reflections
from a standard sample. One way to know if a sample will
be a correct standard is to plot the full width at half max-
imum of the reflections of this sample against the peaks
positions (◦2θ). This curve is called the Instrument Resolu-
tion Function (IRF)[21]. In Fig. 2such functions are shown
for three samples, a standard Si powder, a well-annealed Fe
powder and the starting Fe powder used in this study. We
observe that the Fe starting powder displays a greater broad-
ening than the well-annealed Fe and the standard Si pow-
ders implying that in this powder size and strain effects are
present and cannot be neglected. Hence we have chosen the
well-annealed Fe powder as a standard even if broadening is
a little more pronounced than in the Si powder. This choice
is motivated by the fact that the standard and the powders
under investigation are the same material with peaks posi-
tions very close (the same 2θ scan range) and the same X-ray
absorption coefficient.

In order to use the Williamson–Hall plot for a rapid com-
parison of size and strains between the different milling
conditions, all the peaks have been fitted by Voigt func-
tions and we usedEqs. (10) and (11)to obtain the integral
breadthsβf . An example of such a fit is presented inFig. 3
The Williamson–Hall plots for the starting Fe powders and
the three ball milled powders are given inFig. 4. As it can
be seen the (2 0 0) and (3 1 0) reflections are broader than
the others reflections. This could be due, firstly to a slight
tetragonal distortion[11,30] and secondly to the difference
of the elastic moduli of single crystal Fe existing between
the (2 0 0) and (3 1 0) and the others crystallographic direc-
tions [12,31]. We have thus decided to exclude the (2 0 0)
and (31 0) reflections for the Williamson–Hall plots. The
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Fig. 4. Williamson–Hall plots (ω = −400 rpm) for the different disk speed
conditions.

results of these plots summarized inTable 2illustrate the
influence of the disk speed on the size and the strain of the
Fe ball milled powders.

We have then calculated the size and strain Fourier
coefficients using the Stoke deconvolution[28] and the
Warren–Averbach method (Eqs. (5)–(8)) for the (1 1 0) and
(2 2 0) reflections. We have obtainedAS coefficients with

Table 2
Results for the Williamson–Hall plots

Disk speed (Ω) (rpm) Size (〈D〉v) (Å) Strain (η)

Starting powder 1393 0.85× 10−3

150 1189 1.65× 10−3

250 600 2.55× 10−3

350 300 6.35× 10−3
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multiple-line Voigt method for Ω = 350 rpm.

a strong “hook” effect and RMSS (〈ε2
L〉1/2) with scattered

data as it can be seen in Fig. 5. One way to attain higher
quality data is to use the so-called multiple-line Voigt
method [29]. Expressions (12), (13) and (14) have been used
and results are presented in Fig. 5 for the sample milled at
Ω = 350 rpm. No “hook” effect is observed for the AS co-
efficients and monotically decreasing curves are obtained.
Furthermore it is possible from βCS, βCD, βGS, βGD and
from the AS

L expressions to directly calculate the average
surface-weighted domain size 〈D〉s (consistent with the
Warren–Averbach formalism), the average volume-weighted
domain size 〈D〉v (consistent with the Scherrer equation),
and the surface-weighted and volume-weighted column
length distribution functions ps(L) and pv(L). Expression of
〈D〉s, 〈D〉v, ps(L) and pv(L) can be found in [29]. It is also
possible to calculate the maximum strain e (see Eq. (4)) that
will be a function of βD. Results concerning the domain size
(〈D〉s and 〈D〉v) and the strain (〈ε2

L〉1/2L = 100 Å and e) ob-
tained from the multiple-line Voigt method are summarized
in Table 3 and results concerning the column length distri-
butions and strain (〈ε2

L〉1/2) as a function of L are presented
in Fig. 6. The high efficiency of the ball milling process on

Table 3
Results for the surface-weighted, volume-weighted domain sizes, RMSS
and maximum strain from the “double Voigt” method

Disk speed
(Ω) (rpm)

〈D〉s

(Å)
〈ε2
L〉1/2L =

100 Å (10−3)
〈D〉v
(Å)

e
(10−3)

Starting powder 1013 1.1 1892 0.941
150 499 1.65 695 0.913
250 284 2.2 426 1.93
350 142 4 197 4.62

the domain size reduction has been noticed whatever the
method employed (surface or volume-weighted). As it was
expected the column length distribution becomes sharper
when the disc speed increases. Furthermore the augmenta-
tion of the strain with the milling conditions has also been
observed and it seems that a gap exists between the 250
and 350 rpm disk speed.

At this stage and using the properties of the Voigt func-
tions, we are able to calculate the diffracting domain size
and the lattice strain following five different methods:

(i) The simple Scherrer–Stoke relations using the inte-
gral breadth (Eqs. (1) and (2)) where the broadening
of the peak is attributed to the sole size effect or to
the sole strain effect. Assuming that the crystallites are
quasi-isotropic an average of all the reflections can be
made.

(ii) The Williamson–Hall plot using the integral breadth.
(iii) The Voigt method where the Cauchy component of

the integral breadth is attributed the size effect and the
Gauss component is attributed to the strain effect. Here
again an average of all the reflections can be made.

(iv) The so-called “double Voigt” method that is used to de-
termine the size and the strain Fourier coefficients (AS

L,
〈ε2
L〉1/2) necessary to perform a Warren–Averbach line

profile analysis. The results obtained by this method
are then related to the direction normal to one family
of plane, here the (1 1 0) one.

(v) The so-called “double Voigt method” which is used
to determine the volume-weighted domain size 〈D〉v,
and the strain e consistent with the Scherrer–Stokes
formalism but calculated using the βCS, βCD, βGS, βGD
parameters. Here again the results are related to the
direction normal to one family of plane.

According to the kinematic description of mechanical al-
loying [32,33] we have calculated the shock power, being the
product of the frequency with the kinetic energy, generated
in our system with our conditions. Indeed the shock power
is a more meaningful physical parameter than the disk and
the vial speeds. The values of the mechanical parameters for
the different disk speeds are presented in Table 4.

We have then plotted in Figs. 7 and 8 the grain size and
the strain as a function of the shock power for the single
line methods (methods i, ii and iii) and for the multiple-line
methods (methods iv and v). In Fig. 7, the methods are
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Fig. 6. Surface-weighted (a), volume-weighted (b), column length distri-
bution functions and strain (c) as a function of L.

compared taking into account all the diffraction peaks and in
Fig. 8 are presented the results concerning the plane (1 1 0).

Among all these methods the Williamson–Hall plot gives
the highest values of the size and the lowest values of the
strain of the crystallites. It has to be noted that in Fig. 7b the
value of the maximum strain e is given thus the values of
the strain η given in Table 2 concerning the Willamson–Hall

Table 4
Values of the shock power and the friction energy ratio for the various
disk speed conditions

Disk speed (Ω) (rpm) Shock power (W) Es/Et

150 1.75 0.0917
250 3.63 0.7552
350 14.33 0.3935

plot have been divided according to the Eq. (4). Concerning
the others averaged single line methods (Fig. 7) the Scherrer
relations seems to under-estimate the size and over estimate
the strain if it is compared to the Voigt method. This is due
to the fact that in the Scherrer case all the peak broadening
is attributed to the size or to the strain effect.

When we compare the results on the (1 1 0) plane (Fig. 8a),
the 〈D〉v values and the Voigt (1 1 0) values are the largest.
For these methods the calculation used the gauss compo-
nent of Voigt functions coming from single (Voigt (1 1 0)) or
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multiple (〈D〉v) lines method. It has to be noticed (Fig. 8b)
that the strains determined from these methods are very
close. Here again the Scherrer relation and the maximum
strain relation give the smallest size and the largest strain.
These two figures illustrate the great discrepancy of the re-
sults obtained with different methods. Table 5 shows the
comparison of the ratio between the highest and the lowest

Table 5
Ratio between the highest and the lowest value of the size and strain
analysis for all the methods employed and excluding Williamson–Hall
(WH) and Scherrer–Stokes (S) methods

Shock
power (W)

Size Size
excluding
WH and S

Strain Strain
excluding
WH and S

0 (starting powder) 4.6 2.9 6.5 1.6
1.75 5 2.4 5.8 2.05
3.63 4.3 2.2 6.4 1.25

14.33 5 2.4 6.1 1.25

value of size and strain for all the methods and excluding
the Williamson–Hall and the Scherrer–Stokes methods. As
it can be seen more homogeneous results are obtained com-
paring Voigt and double Voigt methods than comparing all
the methods.

Assuming that strain broadening is due to the creation
of dislocations we have analyzed X-rays diffraction results
according to the model proposed by Ungar et al. [34]. This
model is based on the modification of the Williamson–Hall
plot.

!K = α+ βKC̄1/2 +O(K2C̄) (16)

where K = 2 sin(θ)/λ, !K is the FWHM, α = 0.9/D and β
the constant depending on the effective outer cut-off radius
of dislocations, on the Burgers vector and on the density of
dislocations. C̄ is the average contrast factor of dislocations
and can be calculated following the relation:

C̄ = C̄h00(1 − qH2) (17)

with H2 = (h2 k2 + h2 l2 + k2 l2/(h2 + k2 + l2)2).
C̄h00 values have been calculated in [34] for bcc systems

as a function of elastic constant c11, c22 and c44. q is related
to the nature of the dislocations (screw or edge) and values
of q have been calculated for pure screw and pure edge
dislocations as a function of the elastic constants in the bcc
system. On the other hand, q can be deduced directly from
the line profile analysis of the diffraction pattern. Indeed
inserting (17) into the quadratic form of (16) yields

(!K)2 − α

K2
= βC̄h00(1 − qH2) (18)

From the linear regression of the left-hand side of Eq. (18)
versus H2, the parameter q can be determined. We have thus
determined the q parameter for each sample as it is illustrated
in Fig. 9 and we have plotted the q values versus the shock
power (Fig. 10). In Fig. 9, the values used for the calculation
of the q parameter for pure edge and pure screw dislocations
are 2c44/(c11 − c12) = 2.416 and c12/c44 = 1.215. We thus
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Fig. 9. Determination of the parameter q for the sample Ω = 350 rpm.
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Fig. 10. Nature of the dislocations as a function of the shock power.

note that the screw nature of the dislocations increases until
the 3.6 W condition and decreases for the 14.3 W condition.

In the ball milling process, the total kinetic energy Et
during the shock can be decomposed in two components
[12]:

• The friction kinetic energy Ef proportional to the tangen-
tial velocity.

• The shock energy Es proportional to the normal velocity.

As it can be seen in Table 4, the modification of the sole
disk speed parameter greatly affects the shock power value
and the ratio Es/Et. Furthermore these two parameters evolve
in a different way as a function of the disk speed, the shock
power increases with the disk speed while a maximum of
the ratio Es/Et is reached for the 250 rpm condition.

We have plotted in Fig. 11 the q values as a function of
the ratio Es/Et. It seems that the ratio of shock energy (or
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Fig. 11. Nature of the dislocations as a function of Es/Et.

the ratio of friction energy which is the counterpart) gov-
erns the nature of the dislocations. Indeed when this ratio
increases the nature of the dislocations goes from mainly
edge to mainly screw. On the other hand, this ratio is not
related to the number of dislocations meaning that even if
the ratio Es/Et is larger for the Ω = 250 rpm condition
than for the Ω = 350 rpm condition, we have no informa-
tion, at this stage, about the density of dislocations for these
conditions.

In order to quantify the dislocations density we have em-
ployed the modified Warren–Averbach method [15]:

lnA(L)∼= lnAS(L)− ρBL2 ln

(
Re

L

)
(K2C̄)

+O(K4C̄2) (19)

ρ is the density of dislocations, B = πb2/2 with b the Burg-
ers vector of dislocations and O stands for higher order terms
in K2C̄. Due to the equipment used in this study, the raw
data are not of high quality to perform a correct Fourier anal-
ysis. Thus we have fitted the all the peaks by Voigt functions
and used the properties of these functions to determine the
Fourier coefficients. Indeed the Fourier transform of a Voigt
function is expressed in (13) replacing ALS by A(L) and βCS
and βGS by βC and βG, respectively. Assuming an isotropic
shape of the domains ln A(L) is then plotted for all the re-
flections and not only for two orders of one reflection. The
term X(L) = ρBL2 ln(Re/L) is determined from Eq. (19)
for each L value. The values of ρ and Re are obtained by
plotting X(L)/L2 versus ln(L) and by using a linear regression
for the small values of L. Moreover following the modified
Warren–Averbach method and using the plot AS(L) versus
L we obtained a value of the domain size 〈D〉s. The mod-
ified Warren–Averbach plot and the plot of X(L)/L2 versus
ln(L) for the 1.75 W condition are presented in Fig. 12. A
summary of the density of dislocations and of the domain
size (for the modified and classical Warren–Averbach and
Williamson–Hall methods) is listed in Table 6. We note that
the values of the domain size are close to those found us-
ing the classical Warren–Averbach method letting suppose
a quasi-isotropic shape of the crystallites while the results
are different for the classical and modified Williamson–Hall
plots. The density of dislocations seems to reach a maxi-
mum for the 3.63 W condition and then decreases for the
14.33 W condition. On the other hand, we have seen that the
strain still increases between those two conditions whatever
is the method employed for it determination. It suggests that
others sources of strain are present as stacking fault, twins
or vacancies [16]. Considering the distance between dislo-
cation δ = ρ−0.5 it comes that the average number of dis-
location per crystallite is 22 for the starting powder and the
1.75 W condition, 18 for the 3.63 W condition and 7 for the
14.33 W condition.

As we have seen in this study, different approaches can
be adopted to extract information about size and strain
from diffraction patterns. Each method has advantages and
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Table 6
Dislocations density and domain size following the modified and the classical Warren–Averbach and Williamson–Hall methods

Shock power (W) ρ (1017 m−2) 〈D〉s (Å) modified WA 〈D〉s (Å) classical WA 〈D〉v (Å) modified WH 〈D〉v (Å) classical WH

0 (starting powder) 0.46 1046 1013 960 1393
1.75 1.53 567 499 796 1189
3.63 2.98 335 284 380 600

14.33 2.6 145 142 292 300

disadvantages. For a rapid comparison, the Scherrer–Stokes
formalism is still very useful even if this method leads to
erroneous results. The Williamson–Hall plot allows the ef-
fects of size and strain to be separated, but is valid only if
the data follow a straight line. If this is not the case, some
data have to be excluded or linear fits have to be performed
for different families of planes [21]. As we have shown,
Voigt methods and Warren–Averbach formalism lead to
homogeneous results and have to be employed to extract
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Fig. 12. Modified Warren–Averbach plot (a) and plot of X(L)/L2 vs. ln(L)
(b) for the 1.75 W condition.

accurate information about size and strain of diffracting do-
mains. The main differences between these methods are as
follows:

• One of these methods take into account all the diffrac-
tion peaks (Voigt method) and implies averaged
values assuming an isotropic shape of the diffracting do-
mains, while the other is related to one family of planes
(Warren–Averbach).

• These methods are based on different definition of the
size and the strain (volume-weighted or surface-weighted
size and apparent or RMS strain). 〈D〉v is always greater
than 〈D〉s with 1.31 ≤ (〈D〉v/〈D〉s) ≤ 2 [29,35] and
in the case of pure Gauss strain broadening 〈ε2

L〉1/2 =
(2/π)1/2e [29,35].

4. Conclusion

We have described and employed different line profile
analysis methods to determine the size of coherently diffract-
ing domains and the lattice strain of ball milled powders.
Voigt functions have been used to fit all the diffraction peaks.
Whatever the method employed the efficiency of ball milling
has been evidenced. Among these methods the so-called
“double Voigt” one allows to have analytical expression of
the Fourier coefficients used in the Warren–Averbach. All
the methods display the same trend:

• Rapid decrease of the coherently diffracting domain size.
• Increase of the strain state.

Willamson–Hall, Scherrer and apparent strain relations
have to be employed only in a first qualitative approximation,
more accurate results are obtained using the single line Voigt
or the so-called “double Voigt” methods.

We have used the shock power and the ratio Es/Et, which
are meaningful physical parameters, instead of the classical
disk speed to compare ours results.

Assuming that the strain is only due to dislocations we
have used the average contrast factor of dislocations and the
modified Williamson–Hall plot to evaluate the screw or the
edge nature of these dislocations as a function of the shock
power. We have noted the increase of the screw nature up
to a maximum (3.6 W) and a decrease for the highest shock
power condition (14.3 W). We have also observed that the
ratio of the shock energy Es/Et seems to govern the nature
of the dislocations (edge or screw).
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Finally the density of dislocations have been determined
according to the modified Warren–Averbach method, we
have then noted a maximum value (2.98×1017 m−2) for the
3.6 W condition.
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