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Abstract

Process control agent (PCA) can strongly in¯uence the size of ball milled powder particles. Experimental results show that the mean

particle size is affected by: (1) the types of the PCA, (2) the amount of PCA, and (3) the milling duration. Two kinds of materials, namely

Al and Mg, were used in the experiment and analysis of the in¯uence of process control agent. It was found that there is a critical amount of

process control agent below which the size of the powder particles tends to increase and above which it tends to decrease. In order to predict

the amount of PCA required for a particular mean particle size under a particular milling duration resulting from a particular mechanical

alloying process, a back-propagation neural network is employed. For each combination of base material and PCA, a neural network is

trained using experimental data to achieve the correlation between the amount of PCA and a given particle size under a particular milling

duration, i.e., PCA amount�f(particle size, milling duration). The testing results show that the trained networks have a fairly good

generalization capability # 1999 Elsevier Science S.A. All rights reserved.
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1. Introduction

Powder particles in the ball mill are subjected to high-

energy collision, which causes the powder particles to be

cold-welded together and fractured [1±3]. The cold welding

and fracturing process enables powder particles to be always

in contact with each other with atomically clean surfaces and

with minimized diffusion distance. The essential condition

for a successful mechanical alloying process is the balance

between cold welding and fracturing. However, this balance

in most cases may not be obtainable by the milling process

itself, especially if soft materials are used. For such cases,

cold welding among powder particles, and between powder

particles and milling tools (bowl and balls), becomes a

serious problem. The degree of cold welding is dependent

on the ductility and the ability to cold welding of the powder

to be milled. Depending upon which process is dominant

during mechanical alloying, i.e. micro-forging or fracturing,

powder particles may grow in size through agglomeration by

cold welding, and may change from equi-axed particles to

platelet or ¯ake particles by micro-forging or become

smaller in size through the fracture process. In order to

obtain the balance between the fracturing and welding, a

process control agent (PCA) is normally used in the milling

processes [4,5]. The amount of PCA used in a milling

process is dependent on the properties of the powder par-

ticles, the impact energy and type of PCA.

There exist numerous types of process control agents.

Amongst them, stearic acid is one of the most commonly

used and effective PCA. The percentage of stearic acid used

in a mechanical alloying process is about 1±3 wt% of the

powder weight, depending upon the properties of the mate-

rials to be milled. For example, for ductile materials, more

stearic acid is needed and vice versa. Because the melting

temperature of stearic acid is 688C, it exists in a solid state at

the beginning of milling. In this form, the stearic acid may

not be homogeneously distributed and hence may result in

an inhomogeneous distribution of particle size. Other PCAs

include heptane [6], ethyl acetate [7], ethylenebidi-stera-

mide [8,9], polyethylene glycol [10], dodecane [11], hex-

anes [12,13], methyl alcohol [14] and ethyl alcohol [15],

which are also widely used in the milling process. In the

present study, two types of material, i.e., Al and Mg, are

involved in ball milling with two different kind of PCA. The

results are analyzed to ®nd the in¯uence of the PCA on the

®nal particle size after ball milling.

The particle size is a critical parameter in controlling

inter-reactions between the different constituents. Although

two brittle materials can be mechanically alloyed, one soft

material as a binder may assist the rate of reaction. Cold
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welding is an essential requirement of alloying. Without

cold welding, the reaction rate is slow. Therefore the particle

sizes should be relatively large. However, excessive cold

welding between particles may also slow the reaction rate

and ®nally resist the reaction. This is due to no new surfaces

being produced by fracturing events, which is an essential

process of the balance between the cold welding and frac-

turing of the powder particles. Since the size of the particles

is a function of the amount of PCA, the prediction of the

amount of PCA required based on the size of the particles

becomes an important issue. Aikin and Courtney [16]

applied a discretized form of the ®ssion±fusion equation

to the modelling of particle size distributions during

mechanical milling. In this paper, neural networks have

been used for predicting the amount of PCA required for

a particular mean particle size under a particular milling

duration.

The experimental procedure is ®rstly described. The

results are then presented and discussed. In order to predict

the particle size under different milling conditions, the back-

propagation neural networks are trained by using part of the

experimental data. Every combination of material (Mg or

Al) and PCA has its own neural network. The neural network

training process is brie¯y described. The test results are

presented and discussed to assess the neural network's

generalization capability.

2. Experimental

Elemental Al and Mg powder particles were milled in a

planetary ball mill operated at 250 rpm. Sixteen steel balls of

20 mm diameter are being used in all milling processes. To

avoid the in¯uence of oxidation during milling, the milling

vial was ®lled with Ar gas before milling. 0.5±4 wt% of

stearic acid, CH3(CH2)16CO2H, or polyethylene glycol,

HO(C2H4O)nH, was used in the milling to study the effect

of PCA.

After each run, the weight of the powder collected was

measured. The mean particle size and distribution of the

particles under different milling conditions were measured

using two instruments, namely a Horiba LA-910 laser

scattering particle size distribution analyzer using a refrac-

tive index (in water) of 1.60, and a Quantimet image

analyzer.

3. Results and discussion

Fig. 1 shows the change in mean particle size of the ball

milled Mg with different percentages of stearic acid at

different durations. The size distribution shows that the

particle size increases at the initial stage of milling followed

by continuous decrease until about 5 h of milling. After 5 h

of milling, the size of the milled particles is almost

unchangeable. The increase in particle size at the initial

stage is due to inhomogeneous distribution of the PCA. Due

to this uneven distribution of the PCA at the initial stage, Mg

particles contact each other without the preventative action

of PCA. Cold welding therefore becomes a dominating

factor. At longer milling duration, the molten PCA has been

homogeneously distributed resulting in an even reduction in

particle size. It can be seen that increase in PCA has led to a

reduction in particle size.

Fig. 2 shows the change in the weight fraction of Mg

recovered after milling with different percentages of stearic

acid at different milling durations. Cold welding may take

place between the powder particles as well as between the

milling tools and the powder particles. Two trends can be

found in Fig. 2, namely that the powder recovered increases

with an increase in the, PCA, and slightly longer milling

time may lead to an increase in the powder recovered. It is

obvious that an increase in the PCA may resist cold welding

between the particles and hence result in fracturing of the

powders. Although the PCA will be exhausted with pro-

longed milling, for a short milling duration, the homogeneity

of the PCA distribution is essential. When the milling

duration is too short, the portion of powder without PCA

may be cold welded onto the surfaces of the milling tools,

which leads to less recovery of powder.

Fig. 1. Mean particle size of Mg as a function of milling duration and the

amount of stearic acid.

Fig. 2. Weight fraction of milled Mg for various durations with different

amounts of stearic acid.
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Fig. 3 shows the mean particle size of the ball milled Mg

with different percentages of polyethylene glycol as PCA at

different milling durations. A similar trend as for Mg with

stearic acid can be observed, i.e. that the particle size

decreases with increase in the amount of PCA. However,

polyethylene glycol does not reduce the particle size as

effectively as stearic acid, relatively high percentages of

polyethylene glycol having to be used.

Fig. 4 shows the mean particle size of the ball milled Al

with different percentages of stearic acid as PCA at different

milling durations. An increase of particle size in the initial

stage can be observed. A different trend is found than for the

milling of Al power in that the Al particle size increases with

milling duration after 5 h of milling if the stearic acid

concentration is below 1 wt%. If the stearic acid is above

2 wt%, the particle size of the Al becomes small. The

formation of large Al particles is due to the nature of the

fcc structure of Al. Since fcc Al has more slip systems, it is

easily deformed and cold welded together, leading to the

formation of large particle sizes. When 0.5 wt% of stearic

acid was used, particle sizes of about 3±5 mm were

obtained. It was interesting to ®nd that a small ball was

enclosed within a big ball.

Fig. 5 shows the mean particle size of the ball milled Al

with different percentages of polyethylene glycol as PCA,

for different milling durations. It is observed that polyethy-

lene glycol is not as effective as stearic acid for particle size

reduction. It was also observed that very large particle sizes

were resulted when the PCA amount was below 2 wt%. This

is because too much cold welding leads not only to dramatic

increase in particle size but also to loss of powder due to cold

welding with the milling tools. Moreover, polyethylene

glycol is not as stable as stearic acid, since a fast increase

in particle size with longer milling duration.

4. Prediction of the amount of PCA for a given particle
size under a particular milling duration

4.1. The back-propagation (BP) neural network

Based on the experimental data, it is clear that for a given

base material and PCA type, the relationship between the

PCA amount, particle size, and duration is highly non-linear.

One common approach to approximate this kind of relation-

ships is the regression method. However, since the nature of

the non-linearity relationships is not known, it must be

assumed ®rst. The neural network is typically a `̀ black-

box'' approach to model unknown relationships based on

observed input±output data. In other words, there is no need

to know the nature of the non-linearity relationship. In this

paper, the back-propagation neural network is employed to

learn the relationships between the PCA amount, the particle

size, and the milling duration.

Neural networks (NNs) are an information processing

technique that simulates biological neurons using compu-

ters. One of the most important application of NN is

modelling a system with an unknown input±output relation.

Usually, accurate information of the system is not available

and it is possible only to utilize a number of examples

observed from the actual system, called the training set.

Given a ®xed architecture of the network, learning is carried

out through modifying the parameters that eventually mini-

Fig. 3. Mean particle size of Mg as a function of milling duration and the

amount of polyethylene glycol.

Fig. 4. Mean particle size of Al as a function of milling duration and the

amount of stearic acid.

Fig. 5. Mean particle size of Al as a function of milling duration and the

amount of polyethylene glycol.
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mize a certain loss function. Amongst various NN archi-

tectures, the back-propagation (BP) neural network is a

common method that uses the Delta Rule for learning

and approximating any non-linear functions [17]. The con-

struction of a BP-network involves one input layer (sensory

units), one output layer (response) and one or more hidden

layers. Fig. 6 shows the three-layer BP-network used in this

study. The transformation from the input space to the output

space can be mathematically expressed as:

F�x� � f �W2� ��W� x� B1� � B2�; (1)

where f and � are transfer functions that are usually taken as

sigmoidal functions. W and W2 are weights vectors asso-

ciated with the hidden layer and the output layer, respec-

tively; B1 and B2 the bias vectors associated with the hidden

layer and output layer, respectively; and x is the input vector.

Given a number of known input and targeted output pairs,

the network ®rstly uses randomly generated weights and

biases to produce a set of outputs. The sum-squared error

between the actual outputs and the targeted outputs is then

calculated. The network changes the values of weights and

biases in the direction of steepest descent with respect to this

error. This process is repeated until the sum-squared error is

minimized. This is called the BP learning procedure.

Trained BP-networks tend to give reasonable answers when

presented with inputs that they have never seen. This gen-

eralization property makes it possible to train a network on a

representative set of input/output pairs and then obtain good

results for new input without training the network on all

possible input/output pairs.

As shown in Fig. 6, the BP-network used in this study has

three layers. There are two input neurons in the input layer,

i.e., particle size and duration. The output layer has only one

neuron, which represents the PCA amount. A single hidden

layer is selected. Based on the rules for BP architecture

selection proposed by Carpenter and Hoffman [18], the

number of hidden neurons is calculated based on the follow-

ing:

N � 4M � 1; (2)

where N is the total number of training pairs and M is the

number of hidden neurons. However, M can only be used as

an initial value to start with. The actual number of hidden

neurons has to be obtained through trial-and-error.

The transfer functions for both the hidden layer and the

output layer are chosen as Log-sigmoid function. The neural

network program is written using the MATLAB Neural

Network Toolbox [19].

Since the error used for BP learning rule is the sum-

squared error for all of the training pairs, the selection of the

error goal for network training must be based on the training

pairs. In this study, an expected percentage error goal

(error%) for each training pairs is assumed. The expected

sum-squared error goal (SSE-goal) is then calculated as

follows:

SSE-goal �
XN

i�1

�Ti � error%�2; (3)

where Ti is the target output of any training pair and N is the

total number of training pairs. To avoid over-®tting the

training samples, the error% is taken to be around 10%.

4.2. The training and testing results

Three BP-networks have been trained for three combina-

tions of base material and PCA, i.e., Mg with stearic acid,

Mg with polyethylene glycol, and Al with stearic acid. The

training and testing results are presented in the following

sections.

4.2.1. Mg with stearic acid as PCA

The experimental data for the training and testing of the

network are shown in Table 1. There are totally 16 pairs of

data (columns 2±4). Amongst them, four pairs (shaded in the

table) are to be used for testing the network, whilst the

Fig. 6. The BP neural network for approximating the function: PCA-

amount�f(particle-size, duration).

Table 1

Experiment data and predicted output from the BP-network for Mg with

stearic acid (the shaded data are testing samples that have not been used in

BP-network training)

PCA (wt%)

predicted (NN)

PCA (wt%)

actual

Duration

(h)

Mean particle

size (mm)

0.47% 0.5% 5 55.0

0.48% 0.5% 10 38.6

0.53% 0.5% 15 40.8

0.54% 0.5% 20 50.7

0.88% 1.0% 5 32.7

1.13% 1.0% 10 30.3

1.19% 1.0% 15 26.4

1.02% 1.0% 20 27.5

1.96% 2.0% 5 22.8

1.97% 2.0% 10 21.7

2.17% 2.0% 15 20.4

2.11% 2.0% 20 23.2

2.84% 3.0% 5 13.6

2.71% 3.0% 10 8.0

2.62% 3.0% 15 18.1

3.31% 3.0% 20 18.6
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remaining 12 pairs are used for training. The ®nal network

structure has ®ve hidden neurons. With the trained network,

the PCA amount for all the training and testing pairs can be

predicted as shown in column 1 of Table 1. Compared with

the actual PCA amount, the largest relative predicting errors

are 13% and 19% for the training pairs and testing pairs,

respectively. The comparison between the network output

and the experimental data for the testing samples is depicted

in Fig. 7, which clearly indicates that a good agreement has

been achieved.

4.2.2. Mg with polyethylene glycol as PCA

The experimental data for the training and testing of the

network are shown in Table 2. There are totally 16 pairs of

data (columns 2±4). Amongst them, four pairs (shaded in the

table) are to be used for testing the network, whilst the

remaining 12 pairs are used for training. The ®nal network

structure has seven hidden neurons. With the trained net-

work, the PCA amount for all of the training and testing pairs

can be predicted as shown in column 1 of Table 2. Compared

with the actual PCA amount, the largest prediction errors are

24% and 28% for the training pairs and testing pairs,

respectively. The comparison between the network output

and the experimental data for the testing samples is depicted

in Fig. 8, which indicates that a fair agreement has been

achieved.

4.2.3. Al with stearic acid as PCA

The experimental data for the training and testing of the

network are shown in Table 3. There are totally 16 pairs of

data (columns 2±4). Amongst them, four pairs (shaded in the

table) are to be used for testing the network, whilst the

remaining 12 pairs are used for training. Through trial-and-

error, the ®nal network structure has eight hidden neurons.

With the trained network, the PCA amount for all of the

training and testing pairs can be predicted as shown in

column 1 of Table 3. Compared with the actual PCA

amount, the largest prediction errors are 34% and 40%

for the training pairs and testing pairs, respectively. The

comparison between the network output and the experimen-

Fig. 7. Experiment data versus BP-network output (Mg with stearic acid).

Table 2

Experiment data and predicted output from the BP-network for Mg with

polyethylene glycol (the shaded data are testing samples that have not been

used in BP-network training)

PCA (wt%)

predicated (NN)

PCA (wt%)

actual

Duration

(h)

Mean particle

size (mm)

0.47% 0.5% 5 281.0

0.53% 0.5% 10 143.6

0.39% 0.5% 15 878.0

0.40% 0.5% 20 1624.0

1.20% 1.0% 5 39.6

1.24% 1.0% 10 45.0

1.28% 1.0% 15 51.6

1.14% 1.0% 20 66.6

1.51% 1.5% 5 33.7

1.59% 1.5% 10 34.2

1.44% 1.5% 15 47.5

1.59% 1.5% 20 43.8

1.76% 2.0% 5 28.6

2.15% 2.0% 10 33.4

1.78% 2.0% 15 34.6

1.90% 2.0% 20 35.6

Fig. 8. Experiment data versus BP-network output (Mg with polyethylene

glycol).

Table 3

Experiment data and predicted output from the BP-network for Al with

stearic acid (the shaded data are testing samples that have not been used in

BP-network training)

PCA (wt%)

predicated (NN)

PCA (wt%)

actual

Duration

(h)

Mean particle

size(mm)

0.53% 0.5% 5 3018

0.70% 0.5% 10 4719

0.67% 0.5% 15 5286

0.51% 0.5% 20 5076

0.94% 1.0% 5 375

0.94% 1.0% 10 3979

0.89% 1.0% 15 4293

0.97% 1.0% 20 3436

2.15% 2.0% 5 13.5

1.99% 2.0% 10 13.4

2.10% 2.0% 15 38.4

2.35% 2.0% 20 11.9

2.93% 3.0% 5 9.3

2.73% 3.0% 10 10.9

2.83% 3.0% 15 13.4

2.71% 3.0% 20 12.1
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tal data for the testing samples is depicted in Fig. 9, which

clearly indicates that a good agreement has been achieved.

In summary, the comparison between the BP-network's

predictions and the experiment data for the three base

material and PCA combinations clearly shows that, to a

fairly good accuracy, the BP-network is able to predict the

amount of PCA required in order to achieve a certain mean

particle size under a particular milling duration. This sug-

gests that when an accurate mathematical model is not

available, as at present, the neural network model can be

used to guide the ball milling process in terms of predicting

the amount of PCA required. The deviation between the BP-

network predictions and the experiment data could be

attributed to the following:

1. The limited number of training samples leads to being

certain parts of the actual function curve not being

learnt, due to lack of information.

2. The particle size distributions of some experimental data

are not of normal distribution. This could lead to noise in

the experiment data (mean particle size).

3. The BP-network training is essentially a trial and error

process, although there are certain guidelines. This sug-

gests that there is no certainty that the final network

structure is the optimal.

Therefore, the BP-networks can be improved with more

experiment data collected, and more training carried out.

5. Conclusions

In this paper, the authors have presented experimental

results on the mechanical milling of Mg and Al with

different process control agents (PCA), i.e., stearic acid

and polyethylene glycol. The in¯uence of the amount of

PCA on the resulting mean particle size was analyzed and

discussed. It was found that there is a critical amount of PCA

for a particular powder material, below which the particle

size tends to increase and above which it tends to decrease.

The ®nal particle size is a result of the PCA type, the PCA

amount, and the milling duration. In order to achieve a

particular particle size under a particular milling duration,

BP-networks have been applied to predict the amount of

PCA required. Three BP-networks were constructed and

trained for the combinations of (Mg, stearic acid), (Mg,

polyethylene glycol), and (Al, stearic acid). The results

showed a fairly good agreement between BP-network pre-

dictions and the experiment data. Although some deviations

exist from the experiment data, this approach appears to be

valid.
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