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Introduct ion 

Mechanical a l loy ing (MA) is a process whereby a blend of elemental or a l loy  powders is 
subjected to highly energetic compressive impact forces resul t ing in the formation of a com- 
posite powder ( I ) .  The resul tant  powder develops through the repeated cold-welding and f rac-  
ture of the powder par t ic les with a f i na l  composition corresponding to the percentages of the 
respective constituents in the or ig inal  charge (2-3).  This high energy bal l  m i l l i ng  technique 
is unique in that a l loy  formation is a so l id  state process where some of the res t r ic t ions  of 
equi l ibr ium phase formation may be overcome (2). 

Heretofore, mechanical a l loy ing has been mainly u t i l i z e d  in the production of dispersion 
strengthened al loys (2-6). While encouraging success has been met in th is  appl icat ion of MA, 
true atomic level a l loy ing as a resu l t  of th i s  process is s t i l l  a topic of much debate. How- 
ever, recent experiments seem to indicate that  the mechanical a l loy ing technique can, in fac t ,  
be employed to create homogeneous a l loys.  

Benjamin (2) makes reference to the use of MA in the production of a true sol id  solut ion 
of Ni-Cr. Nickel, being ferromagnetic, and chromium, were blended and mechanically alloyed 
for  10-15 hours. The resul tant  powder demonstrated a magnetic response ident ical  to that of 
a s im i la r  a l loy  f o r ~ d  by melting and working. More recent ly ,  McDermott and Koch (7) em- 
ployed mechanical a l loying to create ordered bcc beta brass from fcc copper and hcp zinc 
powders. 

Unt i l  now, mechanical a l loy ing has been applied to r e l a t i v e l y  duc t i le  systems in which 
the mechanism of repeated cold welding and f racture has been well defined metal lographical ly.  
While b r i t t l e  components have been introduced into the MA synthesis of nickel-based super- 
a l loys (2-4), i t  is not apparent that mechanical a l loy ing is feasible when a)l powder com- 
ponents are b r i t t l e .  Extensive p las t ic  deformation during the formation of the i n i t i a l  com- 
posites of the powder components has been experimental ly observed (1,2) and may be essential 
to a l loy  formation by th is  method. To evaluate th is  p o s s i b i l i t y ,  several systems were sub- 
jected to MA in which both components were b r i t t l e  at ambient temperature. 

The following summarizes the i n i t i a l  resul ts of a study aimed at using mechanical a l loy -  
ing to produce composite powders from elemental s i l i con  and germanium. These b r i t t l e  ele- 
ments have been made to form a diamond-cubic subst i tut ional  so l id  solut ion by MA. Energy 
dispersive x-ray analysis,  scanning electron microscopy, and x-ray d i f f r ac t i on  were u t i l i zed  
to characterize the ef fects of the MA process with respect to th is  b r i t t l e  a l loy  system. 

Experimental Procedure 

Two i n i t i a l  compositions were considered in the Si-Ge system; Ge-72 at.% Si and Si-50 
at.% Ge. The s i l i con and germanium star t ing powders were obtained from Alfa products with 
a stated pur i ty  of 99.9% and 99.999%, respect ive ly .  The i n i t i a l  charge was loaded into a 
cy l i nd r i ca l ,  shock res is tant  (S5) tool steel v ia l  (76 x 57 mm diameter) along with 440C 
stainless steel balls (7.9 mm diameter) as the mi l l ing media. The vials employed an o-ring 
seal to contain the internal atmosphere and the ball-to-powder weight rat io was held constant 
at 5:1. Mechanical alloying was carried out with the Spe~ Industrles 8000 Mixer/Mil l .  
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Both compositions were ball milled in both air  and inert argon atmospheres. The MA 
process was carried out over a period of 8 hours with a powder sample taken for analysis at 
l hour intervals. Care was taken to insure that the samples loaded under argon were not ex- 
posed to air  during processing and sampling to eliminate oxygen contamination. At each 
sampling during the 8 hour MA run, a partial vacuum was encountered in those charges loaded 
in air .  This indicated powder oxidation had occurred during processing. No such observation 
was made in the samples loaded under argon. 

Since Si and Ge are isomorphous and exhibit a nearly l inear composition dependence of 
lat t ice parameter, calculated la t t ice parameters were used to ver i fy  alloy formation and 
composition. Lattice parameters obtained were compared to those predicted by Vegard's "Law" 
as well as those provided by Olesinski and Abbaschian (8). X-ray dif fract ion was carried 
out using copper K-alpha radiation and a nickel f i l t e r  in conjunction with a Debye-Scherrer 
powder camera. Scanning electron microscopy was used to analyze MA powder morphology. 
Energy Dispersive x-ray analysis, performed by the Tracor Northern TN5500 X-ray Analyzer, 
was ut i l ized for both qualitative and semi-quantitative powder characterization. EDX samples 
were mounted and polished using standard metallographic procedures which faci l i tated composi- 
tional determination and reduced errors to within approximately 5%. 

Results and Discussion 

X-ray diffraction of the Ge-72 at.% Si air-loaded samples revealed that after 7 to 8 
hours of MA, a solid solution had formed. With a measured la t t ice  parameter of a = 0.54921 
nm, deviation of this value from that of a similar melt-formed alloy (8) was -0.002%. Also 
present on the x-ray pattern were diffraction lines corresponding to SiO 2 and GeO. These 
oxides were detected as early as MA=I hour and remained, although at low concentrations, 
throughout the course of the run. 

MA in an inert argon environment yielded somewhat dif ferent results. While a Si-Ge 
alloy was produced after 4 to 5 hours, the calculated la t t ice parameters indicated a shi f t  
in composition from approximately 37-42 wt.% Si, balance Ge, during the remaining 4-5 hours 
mill ing time. Figure l demonstrates this compositional sh i f t  as well as the abrupt tran- 
sition from elemental Si and Ge to the alloy. Oxides of the elemental constituents were 
not detected by x-ray analysis and also no partial vacuum was encountered during sampling. 

At the composition corresponding to (Si-Ge) 50 at.% and MA=8 hours, the calculated 
lat t ice parameter of the composite powder formed in both a i r  and argon atmospheres corres- 
ponded to an alloy having a composition of 20 atomic % Si, balance Ge, i . e . ,  a larger than 
predicted la t t ice parameter. This deviation from Vegard's "Law" was also demonstrated after 
MA=8 hours for al l  compositions studied with less than 72 at.% Si as shown in Figure 2. 
Several attempts were undertaken to t ry to explain this peculiar alloying behavior which 
seems to be unique to the Si-Ge system. Similar investigations (2,7,9,17) into mechanical 
alloying have yielded expected results in that the f inal composite powders possessed correct 
compositions. In i t i a l  screening of the starting powders and subsequent MA of selected par- 
t i c le  sizes indicated this anomalous alloying behavior was not a function of powder size. 
The presence of l ine broadening in the x-ray dif fract ion photographs indicated that residual 
stress could be affecting the ab i l i t y  to accurately resolve dif fract ion lines. The powder 
samples were subjected to a heat treatment designed to reduce the residual stress effects 
while avoiding temperature regimes favorable for noticeable diffusion. Subsequent x-ray 
diffraction analysis demonstrated a marked decrease in l ine width but calculated lat t ice 
parameters closely marked pre-annealed values. Recently, Pol i t is  and Johnson (18) ut i l ized 
mechanical alloying to synthesize amorphous alloy powders from Cu and Ti. During their in- 
vestigation they reported having to mechanically scrape the vial  and balls to ensure homo- 
geneous composition of the f inal powder. Similar procedures were incorporated into the MA 
of sil icon and germanium with no positive results realized. I t  is assumed that the observed 
alloying behavior is caused by the react iv i ty of Si towards the mil l ing media and vial walls. 
This leads to powder buildup and consequently a preferential loss of si l icon which has been 
found not to be simply a by-product of powder oxidation. In fact, semi-quantitative energy 
dispersive x-ray analysis of powder taken from the vial walls indicate higher than expected 
sil icon concentration levels. 

Energy dispersive x-ray analysis was used to both ident i fy the presence and relative 
amounts of impurities. In al l  samples tested, iron was detected at a maximum concentration 
of 0.5 at.%. Iron contamination Is a result of vial and mil l ing media wear. Enhanced 
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powder homogeneity has been achieved by the replacement of the steel mi l l ing media with 
transformation toughened Zr02 bal ls.  

An interesting observation was made during this study while characterizing part icle 
morphology. In every system containing b r i t t l e  components in which mechanical alloying has 
been attempted, these being Si-Ge, Mn-Bi, and alpha quartz, numerous cases of interpart ic le 
necking have been observed. Figure 3 shows such necking in air-loaded Ge-72 at.% Si mechani- 
cal ly alloyed for 8 hours. These necks are present as early as MA=3 hours for air-loaded 
samples. Similar observations were made in argon-loaded samples where necking occurred as 
early as MA=I hour. Similar necking observations have been made in which the i n i t i a l  com- 
ponents were ductile (12). This seems to indicate that in ter-par t ic le necking is a phenome- 
non not exclusive to b r i t t l e - b r i t t l e  MA systems. While a great majority of the observed 
necks demonstrate a relat ively smooth surface morphology, Figure 4 shows the internal struc- 
ture of such a region. Rather than being a homogeneous part ic le,  the MA powders appear to 
be composed of smaller particles cold-welded together. 

The underlying mechanisms responsible for the inter-par t ic le necking require further 
study for resolution. I t  may be that localized heating increases the p las t ic i ty  of the 
material. This possibly in i t ia tes an extrusion process leading to the observed necks. How- 
ever, calculations aimed at predicting bulk as well as microscopic temperature rises ind i -  
cate otherwise. Using Schwarz's analysis (9), which assumes bulk temperature increases as 
a result of localized shear of powder particles trapped between two col l id ing balls, the 
temperature increase,aT, is given by 

~t )½ FI] AT Z (~ Ko pp Cp 

where F : onV r = 199.08 Mj/m2s is the dissipated energy f lux ,  at = 2d/v s the stress state 
l i fet ime, v s the longitudinal wave veloci ty,  v r = 2 m/s the relat ive velocity of the balls 
before impact, Cp the specific heat of the powder, Ko the thermal conductivity of the 
powder, d = 0.0079 m the ball diameter, PD the powder density, and o n the normal stress de- 
veloped by the3head-on col l is ion of two b~lls. Considering pure Ge, with Ko = 58.6 J/m.K.s, 
PD : 5324 kg/m , Cp = 321.7 J/kgcK, AT = lO.l K. Applying this method to pure Si, with 
Kb = 149 J/m.K.s, pp = 2330 kg/mJ, and Cp = 677.96 J/kg.K, AT = 6.57 K. In the above calcu- 
lat ions, the normal stress was taken to be the maximum compressive stress generated by the 
head-on col l is ion of two balls. Under the given conditions, this value can be determined 
by the relation (14) 

DI + Dr 2 I /3 
~n = °c : 0.616 [PE~( t D - - - ~ ) ]  [2] 

In equation 2, E = 206.92 MPa is the elastic modulus of the bal ls,  P = ( l .Ol x I0-3) 
a = 7.691 x lO -4 kg the load, and a = 0.762 m/s 2 the approximate ball acceleration. Sub- 
s t i tu t ing these values, o n is found to be 99.54 MPa. 

Another method (lO), which considers heating on the microscopic level as a result of 
sl iding f r i c t ion ,  gives similar results. This method considers a system in which a body is 
making contact with another over a l imited area and moving over the surface of the other 
body at constant velocity. The contact area is considered to be square. Under these con- 
dit ions, the microscopic temperature rise is given by 

fW v 
r [3 ]  

AT :7[.~4 ~j(K 1 + K2) 

Where f = 0.6 is the f r i c t ion  coeff ic ient,  W the load, l the half length of the side of the 
contact area, J the mechanical equivalent of heat, and K l ,  K 2 the thermal conductivity of 
the respective bodies. Considering Si-on-Ge with Kl and K2 equal to 149 and 56.2 J/m.K.s, 
respectively, and f = 0.6, equation 3 reduces to 

AT = 1.4068 x 10 -4 (~) [4] 

Using the normal load calculated above and l = 0.025 x lO -6 m, aT = 4.32K. 

These calculated values however are not consistent with measurements. Mi l ler  et a l . ,  
using microsecond time-resolved radiometry, observed temperature increases on the order of 
400 to 500°C upon impaction of NaCl crystals ( l l ) .  More recently, McDermott and Koch (12) 
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have observed similar higher than predicted temperature rises during phase transition experi- 
ments. 

Complex stress states in the compressed powder particles offer yet another possible ex- 
planation for the observed necks. I t  is known that some b r i t t l e  materials under the in- 
fluence of either a pure hydrostatic stress or a hydrostatic plus a superimposed tensile 
stress (15-16), can demonstrate ductile behavior. During the MA process, this may very well 
be the case. Easterling and Tholen (13) have suggested a parallel explanation. When two 
spherical particles come into contact and bonding occurs, storedelastic stress in the con- 
tact region can ini t iate diffusional currents that could lead to neck formation. 

Summary 

Mechanical alloying has been used to form a true solid solution from br i t t le ,  elemental 
starting Si and Ge powders. A Ge-72 at.% Si alloy was produced after 8 hours of ball mil l-  
ing with a calculated lat t ice parameter approximately equal to that of a similar melt-formed 
alloy. Compositions in the Si-Ge system with less than 72 atomic percent Si have also been 
alloyed with final compositions deviating from predicted values. 

Inter-particle necking has been observed in the b r i t t l e  systems Si-Ge, Mn-Bi, and in 
alpha-quartz after varying degrees of mechanical alloying. 

Further work wil l focus on following the structural evolution of the Si-Ge solid so- 
lution from the br i t t le  Si and Ge starting powders. Microanalytical tools including SEM 
and TEM wil l  be used. The feasib i l i ty  of MA br i t t le  components opens up a wide range of 
possibil it ies for the synthesis of new materials. 
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Fig. I .  Alloying behavior of argon-loaded Ge-72 at.% Si. 
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Fig. 2. Lattice parameter variation as a function of at.% Si. 
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Fig. 3. In ter -par t ic le  necking in air-loaded Ge-72 at.% Si (MA = 8 h) 

Fig. 4. Internal microstructure of air-loaded Ge-72 at.% Si (MA : 8 h) 


