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A mathematical analysis of milling mechanics in a planetary ball mill
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Abstract

A detailed mathematical analysis is presented to advance the current understanding of the mechanics of milling operation in a planetary
ball mill in terms of a global Cartesian reference space. The ab initio calculations have identified the role of milling parameters in
determining the condition of detachment of the ball from the vial wall. The condition of an ‘effective’ impact has been identified in terms
of the vial-to-disk speed ratio. It emerges from the analysis that the role of velocity components of the ball at the instant of its impact on the
vial wall warrants proper consideration, because the tangential force determines the lower bound of the vial-to-disk speed ratio conducive
for effective transfer of impact energy to the powder charge in the mill. Finally, a comparison of the experimental results of grain size
reduction during milling of elemental Fe and Cu−Al powder blend with the similar predictions of the present analysis demonstrates for
the first time that elastic properties of the balls and vials play an important role in determining the rate of structural refinement during ball
milling. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Mechanical alloying (MA) is a versatile route of solid state
synthesis of nanometric novel materials with metastable
microstructure and composition [1]. It is known that high
energy ball milling in a planetary mill leads to MA of the
constituent powders through a process involving repeated
deformation, fragmentation and cold welding [1]. In the past,
several attempts have been made to simulate the dynamics
of this milling process in terms of ball velocity, frequency of
impact and power/kinetic energy transferred to the powder
charge during milling [2–14]. Maurice and Courtney [2] and
Courtney [3] have simulated the mechanics of milling on
the basis of Hertzian criterion of perturbed impact to predict
the volume of material affected per impact, impact duration,
strain/strain-rate, temperature rise and cooling rate. Both
these analyses deal with the phenomenological aspects of
collision between two balls and/or a ball and vial wall rather
than the kinematics of the ball motion. On the other hand,
Burgio et al. [4] have derived a set of kinematic equations
to compute the velocity and acceleration of a ball in a plan-
etary mill, and thereby, estimate the energy transferred to
the powder particles. The ball distribution inside the vial is
considered to be independent of the kinematics of the ball
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motion. However, the analysis does not provide a governing
principle to predict an optimum milling condition.

Subsequently, Abdellaoui and Gaffet [5], Gaffet [6] and
Gaffet et al. [7] have suggested through more rigorous
analyses that the power of ball impact rather than the ki-
netic energy or frequency may determine the end products
and efficiency of the milling process. These models, how-
ever, overlook some important kinematic parameters like
the angular variation of impact velocity in determining the
effective amount of power/energy transferred to the powder
particles during a given collision event. In this regard, Bes-
set et al. [8] have proposed that the impact velocity may
be experimentally determined from the size of indentation
on a metallic surface. Magini and Iasonna [9], Iasonna
and Magini [10] and Magini et al. [11] have considered
the same kinematic conditions earlier proposed by Burgio
et al. [4], and calculated the energy transferred per impact
to compare the latter with the experimentally determined
electrical/mechanical power consumed. In spite of such an
elegant approach, the analysis have not yielded an optimum
condition of milling in terms of power/energy for a given
MA condition. Watanabe et al. [12] have simulated the kine-
matics and related trajectory of the ball motion for a variety
of ball mill devices using Kelvin’s dashpot-spring model.
The analysis as well as the photographic observation of
ball trajectory suggest that the relative direction of rotation
between the disk and vial (i.e. parallel and counter rotation)

0254-0584/01/$ – see front matter © 2001 Elsevier Science B.V. All rights reserved.
PII: S0254-0584(00)00289-3



86 P.P. Chattopadhyay et al. / Materials Chemistry and Physics 68 (2001) 85–94

determines the nature of ball trajectory, i.e. cataracting and
cascading motion, respectively.

Subsequently, Dallimore and McCormick [13] have pre-
dicted the grinding media motion in a planetary ball mill
by a two-dimensional discrete element method of computer
analysis. They have compared the Kelvin and Maxwell
visco-elastic models and elastic/plastic yield model, to
characterize the normal and tangential impacts. In addi-
tion, they have also considered the variation in ball motion
and energy dissipation during collision for varying milling
condition in terms of the CuO/Ni reaction synthesis [13].
Regarding the nature of collision, Le Brun et al. [14] have
expressed the collision events and their effectiveness for
MA through a kinematic parameter (Rcritical) without defin-
ing its significance in terms of the mechanism of collision.
It is apparent from the earlier results [2–14] that most of
the investigations conducted so far in the area of dynam-
ics of planetary ball milling have either studied the role
of total power of impact (Pt) for MA or have attempted
to predict the trajectory of the ball motion within the vial.
However, further investigation is warranted to explore the
most conducive conditions for MA derived in terms of the
milling parameters. Moreover, the influence of the impact-
ing medium (balls and vials) in determining the kinetics of
MA has not yet been theoretically analyzed.

In the present investigation, we have presented a kine-
matic analysis in terms of a single Cartesian reference frame
for both the rotating disk and vial. The present model ex-
plicitly defines the role of milling parameters in determin-
ing the criterion for the detachment of ball from the rotating
vial wall prior to impact, so that the detachment angle never
assumes an unrealistic value in the subsequent analysis. For
the first time, the effect of tangential component of the im-
pact velocity of the ball at the instant of impact has also
been taken into account under a no-slip condition to estab-
lish the criterion of the effective impact. Finally, the present
analysis demonstrates that power consumed for elastic de-
formation (Pd) of the ball, which is determined by its elastic
properties, warrants due consideration in the milling oper-
ation. A comparison between the experimental results and
the predictions of the analysis reveals that a higher value
of (Pt−Pd) at a comparable level ofPt results into an en-
hanced rate of refinement the crystallite size in elemental Fe
or Cu−Al powder blend.

2. Mathematical formulation

2.1. Kinematics of motion

The present analysis of the planetary milling operation, in
accordance with the earlier relevant models [4,5], considers
the overall process involving a number of balls in the vial as
equivalent to the cumulative effect of recurring impacts of a
single ball on the vial wall. In other words, the balls are as-
sumed not to interfere with each other’s motion, and hence,

the kinematics and dynamics of a single ball could, in prin-
ciple, represent the overall process of mechanical alloying
(MA) in a planetary ball mill. For estimating the effect of
an individual impact, the effective amount of power/energy
transferred by the balls to the powder volume entrapped be-
tween the ball and vial wall needs proper evaluation. In this
regard, it is assumed that the kinetic energy of impact is
conserved within the colliding bodies.

Following Abdellaoui and Gaffet [5], a single ball has
been conceived as a point mass moving on the vial wall un-
der the ‘no-slip’ condition. In addition, the present analysis
considers the ball motion as a periodic event initiating from
a given point on the vial wall that offers maximum reaction
force on the ball. The kinematics of ball motion, in contrast
to that presented in Ref. [5], has been treated here in terms of
a global reference frame having its origin (O) located at the
center of the disk (Fig. 1). Here,rd andrv are the distances
between the origin and center (C) of the vial, and the lat-
ter and a ball, respectively. The rotational speed of the disk,
determined by the rotational speed of the line OC, isωd in
the anticlockwise (or positive) direction. In accordance with
the planetary motion of the mill, the rotational speed of the
vial in the clockwise direction relative to the line OC isωv.
HereP(x0,y0) is a point on the vial surface lying on the line
OC, that is taken as the point of initiation of the ball mo-
tion. At any instantt, the position vectorsx1 andy1 (Fig. 1)
of the ball at a given time (t) may be expressed as:

x1 = rd cosωdt + rv cos(ωd − ωv)t (1)

and

y1 = rd sinωdt + rv sin(ωd − ωv)t (2)

Fig. 1. Schematic diagram showing positions of the ball on the vial surface
at the point of initiation of its motion (att=0), detachment (att=t1) and
collision (t=t1+t2) (see text).
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Consequently, the respective velocity components in thex
andy directions, i.e.vx andvy , may be obtained as:

vx = dx1

dt
= −ωdrd sinωdt − (ωd − ωv)rv sin(ωd − ωv)t

(3)

and

vy = dy1

dt
= ωdrd cosωdt+(ωd − ωv)rv cos(ωd − ωv)t (4)

2.2. Detachment criterion

Resolution of the centrifugal force originating from the
rotation of the vial and disk along the directionP1C0 in
Fig. 1 yields the net reaction (N) acting on the ball at a given
position on the vial wall as:

N = m [rv(ωd − ωv)
2 + rdωd

2 cosφ] (5)

whereφ is the angular distance described by the ball at a
given moment during its motion on the vial wall starting
from P0 in Fig. 1, andm the mass of a ball. Initiating its
motion from P0, the ball remains in contact with the vial
wall as long asN is positive. This condition yields (from
Eq. (5)):

cosφ ≥ − rv(ωd − ωv)
2

rdωd
2

(6)

At the point of detachment, i.e. atφ=φ1, the resultant re-
action on the ball is reduced to zero, i.e.N=0. As a conse-
quence, it is evident from Eq. (6) that:

cosφ1 = − rv(ωd − ωv)
2

rdωd
2

(7)

It may be noted that a similar expression has been obtained
in an earlier analysis [5]. However, the limiting value of
cosφ (≥−1) expressed by Eq. (7) is utilized here to define
a detachment parameter (S) as:

S = rv(ωd − ωv)
2

rdωd
2

(8)

SinceS must be confined within the limit 0≤S≤1, it can
dictate the possible values/combination ofωd andωv for a
given mill (i.e. known values ofrv andrd) such that the ball
is detached from the vial wall at a given point to make an
impact at some other point on the vial wall considering the
condition expressed by Eq. (7) at the point of detachment:

φ1 = π − cos−1 S (9)

According to Fig. 1, the interval between the ball moving
from the positionP0(x0,y0) to P1(x1,y1) on the vial surface
can be obtained ast1=φ1/ωv. In the same interval, ifθ1 is the
angular displacement of the line OC, thenθ1=φ1ωd/ωv. At
the moment of detachment, the position of the ballP1(x1,y1)

is a point on the surface of the vial with its center located
at (xc1,yc1). Hence,

(x1 − xc1)
2 + (y1 − yc1)

2 = r2
v (10)

where,xc1=rd cosθ1 andyc1=rd sinθ1.

2.3. Kinematics of impact

After the detachment event, the ball continues to move in
a given trajectory and its position at successive time steps is
calculated from the components of velocity in the direction
of coordinate axes at the moment of detachment. The unac-
celerated motion of the ball continues for an intervalt2 until
it collides with the vial surface (Fig. 1). The time step is re-
stricted such that the distance of the ball center from the vial
wall at the final step, say1rv, should be less than the ball
radius. Position of collision on the vial surface,P2(x2,y2), is
given by:

x2 = x1 + vxt2 (11)

and

y2 = y1 + vyt2 (12)

Considering the position of the ball at the point of detach-
ment, and subsequent collision in terms of the respective
position of the center of the vial

(x1 + vxt2 − xc2)
2 + (y1 + vyt2 − yc2)

2

= (x1 − xc1)
2 + (y1 − yc1)

2 (13)

wherexc2 andyc2 are the position coordinates of the centre
of the vial at the instant of collision (Fig. 1). Substituting,
(xc1

2 + yc1
2), (xc2

2 + yc2
2), xc2 andyc2 obtained in terms

of rd, Eq. (13) can be rewritten (fort2>0) as:

(v2
x + v2

y)t2
2 + 2(x1vx + y1vy)t2 − 2{x1rd cos(φ1 + ωdt2)

+ y1rd sin(φ1+ωdt2)}−2{vxrd cos(φ1+ωdt2)

+ vyrdsin(φ1+ωdt2)}t2+2(x1xc1+y1yc1) = 0

(14)

It is interesting to note here that only atP1(x1,y1) and
P2(x2,y2) the ball remains attached to the vial wall and
Eq. (14) is satisfied. At any other point on the trajectory of
the ball duringt2, the left-hand side of Eq. (14) would yield
a negative value, indicating that the ball does not remain at-
tached to the vial. In the event of a collision, the resultant
velocity (v) of impact of the ball is obtained from Eq. (14) as:

v2 = ωd
2rd

2 + (ωd − ωv)
2rv

2 + 2ωd(ωd − ωv)rvrd cosφ1

= vr
2 + vt

2 (15)

wherevr andvt, respectively, are the radial and tangential
components of impact velocity and the angle of incidence
(γ ) in Fig. 1 is expressed as:

γ = tan−1
(

vt

vr

)
= tan−1

(
y2 − yc2

x2 − xc2

)
− tan−1

(
vy

vx

)
(16)
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2.4. Re-initiation of ball motion

After an impact, the ball needs to move to a point situated
at the vial surface on the line OC for initiating the next cycle.
The time elapsed (t3) for this motion is given by:

t3 = α

ωv
(17)

whereα=[2π−(φ1+ωvt2)].

2.5. Frequency of impact

The total time for a complete cycle of ball motion is
determined by the time through which the ball is in contact
on the vial wall (t1), the interval between a detachment and
subsequent reattachment to the vial wall (t2), and the time
elapsed between a collision and subsequent initiation of the
next cycle of motion (t3). Time period for one complete
cycle may thus be expressed as:

tf = t1 + t2 + t3 (18)

Hence, frequency of collision is given by:

f = 1

tf
(19)

2.6. Dynamics of ball impact

Considering that the ball does not change its velocity dur-
ing a flight along the free path, the available kinetic energy
(Et) of the ball of mass (m) in the event of an impact is
expressed as:

Et = 0.5 mv2 (20)

Thus, the total power (Pt) transmitted by the ball per impact
is obtained as:

Pt = fEt (21)

Some of the earlier studies [13,14] have considered the
ball−vial collision to take place under a Hertzian impact
condition [15], and in the present analysis too, this condi-
tion has been adopted. Considering a circular area of impact,
the radial component of the impact force, from the Hertzian
impact theory [15], can be obtained as:

Fr =
(

4

3

)
rb

1/2
(

Y

1 − v2

)
δr

3/2 (22)

whererb is the ball radius,δ the approach distance of the
ball toward the vial surface,Y the elastic modulus, andv the
Poisson’s ratio. Hence, the normal pressure (pn) is obtained
as:

pn = Fr

πa2
(23)

wherea is the radius of the circular impact area obtained
from Ref. [15]. If the deformation of the ball is taken to

be reversible in nature, the duration of impact (ti ) can be
obtained from Ref. [15] as:

ti = 2.94
δr

vr
(24)

Hence, taking the reversible nature of impact into account,
the compression time may be obtained astc=ti /2.

In the present analysis, the mass and radius of curvature
of the vial are considered to be infinity relative to those of
the ball. Thus, a suitable modification of the expression for
linear momentum in the tangential direction yields [15]:

Ft = m
d

dt
(vt + ωrrb) (25)

whereFt is the tangential component of the impact force,
vt the tangential component of the velocity at the point of
collision, andωr the relative angular velocity. Similar mod-
ification for the conservation of the moment of the momen-
tum [15] of the ball about the axis normal to the plane of
motion passing through the point of impact yields:

d

dt
[mvtrb + m(rb

2 + rg
2)ωr] = 0 (26)

Here,rg is the radius of gyration of the ball about its center
of mass. Eliminatingωr from Eqs. (25) and (26),Ft can be
obtained as:

Ft = − m

(1 + rb
2/rg

2)

(
dvt

dti

)
(27)

ConsideringFt to be operative throughout the intervaltc to
bring the tangential velocity down to zero, Eq. (27) yields:
∫ tc

0
dti = −(Ft)

m

(1 + rb
2/rg

2)

∫ 0

vt

dv (28)

Therefore,Ft can be obtained by integrating Eq. (28) to give:

Ft = m

(1 + rb
2/rg

2)

(
vt

tc

)
(29)

3. Experimental

In order to determine the influence of milling param-
eters on the kinetics of MA, ball milling of+300 mesh
size, elemental Fe powder and a powder blend of nomi-
nal composition (expressed in atomic percentage) Cu82Al18
has been performed in a Fritsch Pulverisette P5 planetary
ball mill with individual constituents having a purity level
of >99.5 wt.%. In order to investigate the role of elastic
properties of the milling media, ball milling of the same
weight of powder (20 g) has been conducted separately in:
(a) in chrome steel vials ofrv=75 mm using balls with
mb=4.2 g andY=2.1×1011 GPa atωd=300 and 260 rpm;
and (b) WC vials ofrv=75 mm and balls ofmb=8.4 g and
Y=7.04×1011 GPa atωd=240 rpm. Grain size (dc) varia-
tion has been determined from the broadening of the X-ray
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diffraction (XRD) peaks obtained from samples collected at
different stages of milling using the Scherrer equation [16].

While, instrumental broadening has been corrected by
subtracting the broadening obtained from the annealed (at
600◦C for 2 h) coarse grained (>50mm) sample from the ob-
served broadening, the contribution of strain to line broad-
ening was eliminated by a Lorentzian curve fitting exercise
[17]. However, the determination of the variation of solubil-
ity of Al in Cu for Cu82Al18 composition as a function oft
has not been included in the present study. This is due to the
fact that several factors, other than the milling parameters,
are known to interfere in the variation of lattice parameter
of a given element, e.g. the grain size itself [18,19] as well
as contamination from the milling media or milling environ-
ments [20]. In fact, theoretical and experimental analyses
have shown that a significant rate of alloying in the MA pro-
cess is achieved only afterdc is brought down to<100 nm
[21] and, hence, the variation ofdc with t can well represent
the effectiveness of milling condition.

4. Results and discussion

4.1. Detachment criterion

It is known that, for a given vial (rv) and disk radius (rd),
the main process variables for MA in a planetary mill areωv
andωd [2]. Earlier attempts to construct the milling maps
in terms ofωv andωd using the experimental results of mi-
crostructural evolution during MA have aimed at identifying
the optimum milling conditions for generating the desired
microstructure [5–7]. The present mathematical analysis of
the milling dynamics aims at predicting the milling condi-
tion in terms ofωd andωv, for the occurrence of the most
effective impact between the ball and vial wall to achieve
MA.

In the present analysis, the values ofrd, rv and ball radius
(rb) are taken as 132, 35 and 5 mm, respectively (typical of
a planetary mill), unless otherwise stated. In order to define
the periodicity of the ball motion, it is assumed that the ball
initiates its motion from a point of maximum resultant cen-
trifugal force on the vial surface, i.e.P0 (x0,y0) in Fig. 1. The
displacement of the ball on the vial wall is traced through
an iterative computation (1t=10−5 s) method using Eqs. (1)
and (2) until the detachment condition (at positionP1 in
Fig. 1) laid down by Eq. (7) is satisfied. Subsequently, the
motion of the ball is monitored until the ball undergoes an
impact (positionP2 in Fig. 1) satisfying the condition in ac-
cordance with Eq. (13). The velocity of the ball at the points
P1 andP2 are obtained from Eq. (15). It may be noted that
although a similar relation as that expressed in Eq. (7) has
been derived in some earlier analyses [5,14], the limiting
value of cosφ imposed in the present treatment enables the
prediction of a detachment criteria in terms of the milling
parameters that would ascertain whether detachment of the

Fig. 2. Variation off as a function ofωd for different levels ofωv. The
broken line corresponds toωv/ωd=1.

ball from the vial surface has taken place before analyzing
any collision event. The milling conditions compelling the
ball to remain attached to the vial surface throughout the
cycle of its motion need to be avoided for an effective MA.

4.2. Frequency of impact

In this analysis, the total time (tf ) for a complete cycle of
ball motion can be computed through Eq. (18). Hence, the
frequency (f) of impact for a single ball may easily be ob-
tained from Eq. (19). From the present analysis, it is found
that f increases withωd (Fig. 2) in a manner similar to that
reported by Abdellaoui and Gaffet [5]. Both these analyses
indicate thatf gradually approaches a plateau, the level of
which increases withωv (Fig. 2). Here, it is also interesting
to note thatf increases withωd as long as (ωv/ωd)>1 for a
given level ofωv. As (ωv/ωd) is reduced below unity,f grad-
ually approaches the plateau and this transition is delineated
by the broken line in Fig. 2. Thus, the present analysis pre-
dicts that the level off is determined both byωd andωv, but
the limiting value off is determined byωv/ωd ratio.

4.3. Kinetic energy and power

Fig. 3 presents the variation of total kinetic energy (Et) as
a function ofωd obtained from Eq. (20). It is interesting to
note thatEt manifests a monotonic increase withωd, but is
insensitive to variation inωv. In other words, the total kinetic
energy per impact seems to depend primarily onωd which
is in accordance with the earlier prediction by Abdellaoui
and Gaffet [5].

Fig. 4 records the variation of total power (Pt) estimated
through Eq. (21) as a function ofωd at different levels of
ωv. SincePt=Etf, the functional relationships betweenPt
(or Et) with ωd are similar. However,Pt, unlike Et, is not
independent ofωv, particularly atωd>200 rpm, which may
be attributed to the influence ofωv on f. In this regard, the
value ofPt obtained in the present analysis using the identi-
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Fig. 3. Variation ofEt as a function ofωd for different levels ofωv.

cal milling parameters as that reported in Fig. 4 of Ref. [7]
for rv=33 mm has been compared with the same (Fig. 5a).
It is apparent from Fig. 5a that the results obtained from
the present analysis (solid lines) is in good agreement with
that obtained from Ref. [7] despite a slight difference in
the method of calculation oftf . However, with decreasing
value ofrv, only a marginal divergence in the value ofPt is
obtained in the present analysis in contrast to the significant
difference in the same reported in Ref. [7]. Similarly, it is
evident from Fig. 5b that the theoretical and experimen-
tal results presented by Magini and Iasonna [9] manifest
reasonable agreement with the results of the present study
under comparable conditions; although the magnitude ofPt
predicted by the present model is consistently lower than
that predicted by them. This difference may originate from
the fact that the experimental value ofPt obtained by Mag-
ini and Iasonna [9] corresponds to the power input to the
mill by a mechanical device, whilePt in the present study
signifies the cumulative power of impact obtained from
the planetary motion of the balls which does not include

Fig. 4. Variation ofPt as a function ofωd at different levels ofωv. The
dotted lines represent the range ofPt required for amorphization of Ni–Zr
by mechanical alloying (as reported by Abdellaoui and Gaffet [5]).

Fig. 5. (a) Variation ofPt as a function ofωd and its comparison with the
same reported by Gaffet et al. [7]. (b) Variation ofPt as a function ofωd

and its comparison with the same (both predicted and experimental results)
as reported by Iasonna and Magini [10] under comparable conditions of
milling.

any frictional loss of energy in the power transmission
system.

4.4. Direction of impact

Earlier, Le Brun et al. [14] have considered the angle of
impact in a qualitative manner by classifying the different
modes of interaction between the ball and vial wall (i.e. im-
pact and frictional) in terms of (ωv/ωd). The present anal-
ysis attempts to examine more thoroughly the role of the
angle of incidence (γ ) of the ball on the vial wall (cf. Fig.
1). The variation ofγ with (ωv/ωd) in Fig. 6 demonstrates
that γ is oriented in the anticlockwise (positive) direction
for (ωv/ωd)<1, which is in the reverse sense to that ofωv
(clockwise). At (ωv/ωd)=1, the incidence is normal to the
vial surface, i.e.γ=0. For (ωv/ωd)>1,γ is oriented in clock-
wise (negative) direction and is parallel to that of rotation
of the vial (clockwise) at the point of incidence. The vari-
ation of γ with (ωv/ωd) (as noted in Fig. 6) manifests its
influence on the variation of the radial (Fr) and tangential
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Fig. 6. Variation ofγ as a function ofωv/ωd at ωd=400 rpm. Note that
γ=0 at ωv/ωd=1.

(Ft) components of the impact force, as shown in Fig. 7.
It is evident from Fig. 7a thatFr does not show significant
variation with (ωv/ωd) at any givenωd; but increases sub-
stantially with an increase inωd. However, the direction of
Fr is insensitive to that ofγ . On the other hand,Ft contin-
ually decreases with (ωv/ωd), and it changes its sign from
positive to negative at (ωv/ωd)=1 (Fig. 7b). It may be noted
that Eq. (7) yieldsφ=90◦ at ωv=ωd (i.e. rv is perpendicu-
lar to OC in Fig. 1). Similarly, Eq. (15) yieldsv=ωdrd for
(ωv/ωd)=1, i.e. perpendicular to OC. Thus, it appears that
the ball, when detached from vial wall atφ=90◦, moves
along rv, and subsequently undergoes an impact normal to
the vial surface. This prediction is at variance with the value

Fig. 7. (a) Variation ofFr as a function ofωv/ωd for different levels of
ωd. (b) Variation ofFt as a function ofωv/ωd for different levels ofωd.
Note thatFt=0 for ωv/ωd=1 for all levels ofωd.

of (ωv/ωd)=2.26 quoted by Le Brun et al. [14] for a pure
(i.e. radial) impact. However, it is not possible to identify
the origin for such a difference in the absence of the rele-
vant mathematical derivation underlying similar prediction
in Ref. [14].

The experimental results of Le Brun et al. [14] have
been presented in terms of microhardness and morphology
of deformed Cu powder as a function of (ωv/ωd). Here,
the higher values of microhardness have been obtained at
(ωv/ωd)=1, though the corresponding microstructure of de-
formed Cu powder shows a faceted, instead of platelike,
morphology. They postulated that the chaotic nature of ball
motion at (ωv/ωd)=1 results into the dominance of the fric-
tional mode of interaction between the ball and vial wall.
However, the faceted morphology and higher microhardness
of Cu powders at (ωv/ωd)=1, in comparison with the same
at (ωv/ωd)>1, seems to suggest that impacts at (ωv/ωd)=1
are primarily of the radial type as predicted by the present
analysis. At (ωv/ωd)<1, Ft becomes positive, because the
ball spins in a direction opposite to the that of the vial. As
a result, the powder particles within the impact area start
sliding relative to each other in the opposite direction. Thus,
the particles would tend to sweep out from the contact area
between the ball and vial wall. As a result, the more posi-
tive is theFt , the greater would be the tendency of the ball
to have direct interaction with the vial surface without suf-
ficient amount of powder particles trapped in-between. This
would lead to a higher level of friction and wear induced
contamination of the end product. However, whenFt acts in
the same direction as that of the vial rotation for (ωd/ωv)>1,
the ball and vial spin in the same direction. This condition
is conducive for the tangential as well as normal interaction
forces of impact to promote effective deformation of the en-
trapped powder, as predicted in [2].

4.5. Experimental validation

Earlier, several investigations have indicated that power
of impact plays the governing role in determining the ki-
netics of MA. In this regard, Magini et al. [11] have re-
cently demonstrated that the rate of MA remains the same
when a planetary ball mill is operated in equi-power ab-
sorption conditions, in spite of allowing a large variation in
the milling parameters. However, the role played by elas-
tic properties of the impacting medium in determining such
kinetics has not been taken into consideration. It may be
noted that a considerable fraction of total power (Pt) gen-
erated by an impact is spent for the elastic deformation of
the ball (Pd=pr

2πrb
2δrf/6Y [2]). Thus, the effective power

(Pe) transferred by the ball during an impact to the powder
can be obtained asPe=Pt−Pd. Naturally,Pe takes into ac-
count the elastic property of the milling media. Figs. 8 and 9
show the calculated variation ofPt andPe, respectively, as a
function ofωd for WC and chrome steel media typically in
a Fritsch P5 planetary mill havingωv/ωd=1.25,rb=10 mm,
rd=132 mm, andrv=35 mm. Fig. 8 reveals that an identical
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Fig. 8. Variation of Pt as a function ofωd for WC and chrome-steel
milling medium.

level ofPt can be achieved atωd=240 rpm in a WC vial and
at 300 rpm in the chrome-steel vial. Here, it is interesting
to note from Fig. 9 thatPe for milling in the chrome-steel
medium at 300 rpm is higher than that for WC medium at
240 rpm. However, an identical level ofPe can be achieved
in WC and chrome-steel medium by milling atωd=240 and
260 rpm, respectively. A similar comparison with respect to
the normal pressure (pn) exerted by the ball during an im-
pact is shown in Fig. 10. It appears thatpn is at a higher
level in case of WC vial than in the chrome steel vial for
the range ofωd considered here.

In an attempt to compare the effects ofPt, Pe and pn,
ball milling: (1) the first set of experiments are conducted
at the identical level ofPt (cf. Fig. 8) using WC medium
at ωd=240 rpm and chrome-steel medium atωd=300 rpm;
and (2) in the second set at the same level ofPe using
WC medium atωd=240 rpm and chrome-steel medium at
ωd=260 rpm. The grain size (dc) reduction data obtained
as a function of milling time for elemental Fe powder and
Cu in Cu82Al18 powder blend are shown in Fig. 11a and

Fig. 9. Variation of Pe as a function ofωd for WC and chrome-steel
milling medium.

Fig. 10. Variation ofpn as a function ofωd for WC and chrome-steel
milling medium.

b, respectively. It is evident that in either case a faster rate
of reduction in dc is exhibited by the sample milled in
chrome-steel vial withωd=300 rpm than that in WC vial
with ωd=240 rpm, although the level ofPt is same in either
case (Fig. 8). On the other hand, a similar rate of reduction

Fig. 11. Variation ofdc as a function of milling time for: (a) elemental
Fe; and (b) Cu-18 at.% Al ball milled in WC and chrome-steel vials with
selected levels ofωd.
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in dc is achieved both in elemental Fe powder and for Cu
in Cu82Al18 powder blend when milling is conducted at the
same level ofPe, i.e.ωd=240 rpm in WC andωd=260 rpm
in chrome-steel medium, respectively (cf. Fig. 9). Thus, it
appears thatPe rather thanPt, is the more appropriate cri-
terion for determining the milling performance, and hence
the elastic modulus of the milling medium warrants due
consideration in the MA process. It may be noted that the
higher level of elastic modulus in case of WC in compari-
son to that of chrome-steel vial is manifested in the value
of pn (Fig. 10). However, a faster kinetics revealed in case
of chrome-steel medium at 300 rpm in comparison to that
in WC medium at 240 rpm indicates that the higher level of
pn in case of the WC medium cannot ensure a faster rate of
grain-size reduction during ball milling. The slower alloying
kinetics in WC medium, compared to that in chrome-steel
medium has earlier been observed in other alloy systems
[20]. It might be postulated that Fe contamination from the
steel medium may be responsible for this behavior. How-
ever, such an argument may not hold good for milling of Fe
powder in steel medium, where the contamination effect is
marginalized.

4.6. Critical remarks

In summary, the present analysis distinguishes itself from
the earlier mathematical models of the milling mechan-
ics by several important features. Unlike the earlier mod-
els [2–14], the present analysis explicitly defines through
a detachment parameterS (Eq. (8)) the feasibility of de-
tachment of the ball from the vial wall as an a priori func-
tion of the milling variables, to ensure that the detachment
angle (φ1) does not assume an unrealistic value for a ball
vial impact. The nature of variation off, Et and Pt with
the milling variables shows reasonable agreement with most
of the theoretical and experimental results presented ear-
lier in two rigorous analyses by Abdellaoui and Gaffet [5]
and Magini and Iasonna [9]. In addition, the present anal-
ysis shows that spin of the ball at the instant of impact on
the vial wall must be taken into consideration for identify-
ing the effective impact conditions. It is shown that the tan-
gential component of the impact forceFt changes its sign
from positive to negative at (ωv/ωd)=1 (Fig. 7b). For a pos-
itive value of Ft, the ball and vial spins in the reverse di-
rection during an impact, which would tend to sweep the
entrapped powders out of the impact area. As a result, the
bare contact between the ball and vial surfaces would pro-
voke a higher level of wear and contamination, particularly
at higherωd. On the other hand, a negative value ofFt
is conducive to retaining the powder particles within the
impact area. In contrast to the earlier analyses [2–14], the
present one emphasizes the role played by the elastic prop-
erty of the milling medium in determining the kinetics of
ball milling. It is demonstrated thatPe, rather thanPt, can
be a more appropriate factor influencing the milling perfor-
mance.

5. Conclusions

The ab initio calculation of milling mechanics in a plane-
tary ball mill in terms of a global Cartesian reference frame
has yielded the relevant kinematic and dynamic functions
associated with mechanical alloying. The important conclu-
sions are:
1. The detachment parameterS predicts the feasibility of

detachment of a ball from the vial wall in terms of the
milling variables (ωd, ωv, rv andrd). The detachment, in
turn, ensures the succession of impacts.

2. The values of the total powerPt computed as a function of
the disk speedωd in the present analysis show reasonable
agreement with the values of the same reported in the
literature.

3. Among the various milling parameters, the disk speed
ωd seems to exert the most significant influence on the
radial force that actuates deformation.

4. The direction of the tangential force dictates the effec-
tiveness of an impact and, hence, limits the lower value
of the vial-to-disk speed ratioωv/ωd necessary to induce
an impact conducive for ball milling.

5. Comparison with the experimental results of milling Fe
and Cu–Al blend shows that an enhanced grain refine-
ment rate is achieved with a higher level of effective
powerPe even at the same level of total powerPt. How-
ever, comparable kinetics are obtained at similar values
of Pe, rather thanPt. It is also noted that a much higher
value of normal pressurepn in the case of WC medium
in comparison to that in the chrome-steel medium does
not ensure an enhanced kinetics in the former.
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