The computer simulation of planetary and vibratory mills for production of dispersional metal powders.
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Abstract. 


	The computer simulation of planar planetary and vibratory mills as well as spatial vibratory mill is performed and energy intensities of the mills are calculated. The elasticity coefficient of centric impact, gliding friction and balls rotation are taken into account in planar models and only first one in spatial model. Despite of satisfactory agreement of our energy yield calculations for planetary mill with known estimations for it, there is discrepancy in balls behaviour described in the recent papers and obtained in our research. This difference may affect the energy output if a mill geometry is far from commonly used one. The analytical expression for energy intensity of vibratory mill is refined.


Introduction.


	Computer simulation approach for description of motion and collisions of  milling bodies was firstly applied by Davis and McDermot [� SEQ list  Davis�1�] to estimate the impact velocity and collision frequency in Spex800. Such approach assumed the calculation of displacement and velocity for each milling body (for example, balls, rods etc.) depending on their elastic�viscosity properties and mode of vial motion. Watanabe and Hashimoto [� SEQ list Wat �2�] have shown that the behaviour of milling bodies is determined from the numerical solutions of the classical differential equations of motion with variable parameters. Their values are obtained by preliminary calculation on the base of  last step configuration data. These parameters are associated with coefficients of viscosity, friction, Young modulus of milling bodies materials and deformation of bodies. On the other hand the results of such calculation neglect the presence of milled powder. This factor has been analysed by Magini and Iassona [� SEQ list Magini �3�] in ’’free fall’’ experiments.


	We have tried to combine some ideas of both research groups to calculate the energy intensity of planetary and vibratory ball mills.


Simulation model.


Fig.� SEQ pic mill �1� shows laboratory planetary and vibratory mills and describes the operating parameters.


At the noninertial coordinate system related to the vial of planetary mill (vial walls are at rest in it) the equation of ball motion is


�EQ \o(r;( ()� = � EQ \f(F;m) � + (p2(R + (v2(r ( 2(v ( �EQ \o(r;()�, 					(� SEQ form  �1�)


Laboratory planetary and vibratory mills and their operating parameters.


�


Fig. � SEQ pic �1�.


where r, �EQ \o(r;()�, �EQ \o(r;( ()� are a radius�vector, velocity and acceleration of the ball; m is a ball mass, F is the wall holding force and force of interaction with other balls (gravity force is omitted); R is a radius�vector originated from the plate center and directed to the vial center; R=(R(is a plate radius; (p = 2((p, (v = 2((v are a plate and vial angular frequencies; the relationship between them for epicyclic mill is (v = –�EQ \f(R;rve)�((p, where rve is an external vial radius. At the chosen coordinate system vector R rotates with angular frequency (o= (p– (v.


	We suppose sudden (adiabatic) bringing the mill into operation and random initial ball configuration. All the balls are assumed to be at rest at the time t=0 relative to the laboratory coordinate system, so the velocity and angular frequency of i�th ball at the vial system are  


�EQ \o(r;()�i(0) = ((p ( R ( (v ( ri(0), (i(0) = –(v 				(� SEQ form  �2�)


with randomized ri(0).


	The impact parameters are calculated in the following manner. If the ball reaches the vial wall and at collision point its coordinates are x,y, its velocity v ( �EQ \o(r;()� is decomposed into normal and tangential components (along percussion line and across it): 


vn = c(vx + s(vy,       vt=–s(vx + c(vy,				 (� SEQ form  �3�)


where c=x/r, s=y/r, r=� EQ \r(x2+y2)�. Let ( be the coefficient of centric impact elasticity, i.e. 1–( is the fraction of kinetic energy loss on impact. In other words, ( is the ratio of rebound height to the free fall height. As a result of an impact the normal velocity reduces to vn( = –(1(vn and its increment is (vn = vn – vn( = (1+(1)(vn, where (1 =� EQ \r(()�. In calculations the value (=0.25 has been used.


	During the collision tangential and normal components of the wall holding force relates to each other as a gliding friction coefficient f (its value has been set close to 1), as well as the components of force pulses (integrated over impact time) and velocities increments. However, one should take into account the rotation of the ball with frequency ( and the fact, that friction force acts only till the velocities of two surfaces in contact differ. At the moment they become equal the rolling friction is activated, but we ignore this factor. Thus the procedure of new ball motion parameters calculation is as follows:


�EQ \o((;~)� = � EQ \f(vt;rb)� + (,    k = sign(�EQ \o((;~)�),						


   	(( = (k ( min((�EQ \o((;~)�(, f (((vn(( � EQ \f(mrb;I)� ),						


(( = ( + ((,  v(t  =  vt   + � EQ \f((((I;mrb)�, 					(� SEQ form  �4�)


where rb is a ball radius, I = �EQ \f(2;5)� ( m ( rb2  is a ball longitudinal moment of inertia. 


It should be noticed that the above expressions are consistent with conservation of angular momentum I(( – vt(rb(m (taken about the point of ball�wall contact). Energy loss on an impact is (E = E ( E(, where 


E = �EQ \f(m;2)�((vn2 + vt2) + �EQ \f(I;2)�((2, E( = �EQ \f(m;2)�(((vn()2 + (vt()2) + �EQ \f(I;2)�(((()2. 			(� SEQ form  �5�)


The new ball velocity components are: vx( = c(vn( – s(vt(, vy( = s(vn( – c(vt(. In the case of two balls collision it is convenient to pass to the center of mass system, where balls have velocities (v before impact, v = (v2 ( v1)/2. The direction r2 – r1 is acting as the percussion axis with longitudinal and transverse components of v equal respectively to vn = c(vx+s(vy, vt = –s(vx + c(vy. Here c = (x/r, s = (y/r, (x = x2 – x1, (y = y2 ( y1, r = � EQ \r((x2+(y2 )�. After the impact the velocity normal component becomes vn(= ((1 ( vn and its increment is (vn = (1 + (1) ( vn. The further calculation procedure resembles the same one for the ball�wall collision:


	�EQ \o((;~)� = (� EQ \f(vt;rb)�  +  � EQ \f((1+(2;2)�,       k = sign(�EQ \o((;~)�),       (( = (k ( min((�EQ \o((;~)�(, f (((vn(( � EQ \f(mrb;I)� ),		


		(1( = (1 + ((, (2( = (2  + ((,   v(t  = vt  ( � EQ \f((((I;mrb)� . 			(� SEQ form  �6�)


The angular momentum 2m(rb(vt + I((1 + I((2 is conserved during the impact. Energy loss is  (E = E ( E(, where 


E = 2(�EQ \f(m;2)�((vn2+ vt2) + �EQ \f(I;2)�((12 + �EQ \f(I;2)�((22,        E( = 2(�EQ \f(m;2)�(((vn()2+ (vt()2) + �EQ \f(I;2)�(((1()2 + �EQ \f(I;2)�(((2()2.	 (� SEQ form  �7�)


New components of the half relative velocity of the balls v( = (v(2 ( v(1)/2 can be deduced from vn( and vt( by reciprocal conversion: vx( = c ( vn( – s ( vt(,  vy( = s ( vn( + c ( vt(. The new ball velocities thus become v1(= v0 ( v(, v2( =  v0 + v(, where v0  =  � EQ \f((v1+v2);2)�  is the center of mass velocity.


	Energy intensity of the mill is evaluated as the total kinetic energy loss (E related to the time elapsed.


	The procedure of the planar vibratory mill simulation is similar to that for planetary mill except for the different boundary conditions (cylindrical in real space or rectangular in planar projection vial; as a variant a cylinder with spherically rounded top and bottom was taken into consideration) and the fields of internal inertial forces. At the vial coordinate system the equation of a ball motion is 


				�EMBED Equation.DSMT4���, 					(� SEQ form  �8�)


where A and ( are amplitude and angular frequency of the vial oscillations, F is analogous to that at Eq.� SEQ form ff1 �1�, but may include the force of gravity. The initial ball configuration is also randomized. If the occupancy of the vial exceeds 0.5 the initial ball radius during generation is reduced to the value rb/1.5, and then the balls grow to the assigned radius value rb, pushing apart each other. After that during the time ~ �EQ \f(1;1-()�(� EQ \r(� EQ \f(2H;G) �) �, where H is a vial height, G = A ( (2 is an amplitude of vial acceleration, the balls are condensed at the vial bottom by means of pseudogravity force G, and finally oscillations of G are activated.


	In three�dimensional vibratory mill case, the kinetic energy losses associated with inelasticity parameter ( are only taken into account. The losses induced by friction during eccentric impact and a ball rotation are neglected. By the other words, we assume that f=0. It is made to simplify the model and accelerate the computation rate.


	The change of velocities of two balls in the act of their collision satisfies the equations:


v1(= v1 + (((vn, v2(= v2 ( (((vn, where ( = � EQ \f((1+(1);2)�, (vn = �EQ \b\bc\[ ((v2(v1)(n)�(n, n is the unit vector along the percussion axis r2(r1. Energy loss is (E =(1(() ((�EQ \f((vn;2)�(�EQ \s\up8(2)�(2. If the collision of ball against the wall takes place then v( = v ( (1+(1) ( (vn, where vn = (v ( n) ( n, n is a unit vector normal to the wall. In that case the energy loss is (E = (1 ( () ( (vn(2.


Results and discussion.


	The simulated energy intensity for the two-dimensional planetary mill is in relatively good agreement with the expression produced in [� SEQ list Magini1 �4�], simplified form of which is (given rb<<rv)


W  ( (b((2()2( N ( m ( (p3 ( R2 ( �EQ \b\bc (1 + � EQ \f(rv;R) �)��EQ \s\up8(2)�,			 (� SEQ form  �9�)


where (b is a yield (shadowing) coefficient, rv is a vial radius, N is the number of balls, other variables have been described above. We have found that for R/rv close to 1.3 the Eq.� SEQ form WMag �9� is accurate within a factor of 1.2 or 1.8. However, there are some reasons that casts doubt on the validity of Eq.� SEQ form WMag �9�, particularly as regards to physical mechanism of energy losses. 


According to our results about 90 % of energy releases in planetary mill due to friction process (whereas friction is of no importance for vibratory mill). Provided the friction coefficient f is set equal to zero the energy consumption becomes approximately one order of magnitude lower. Nevertheless, such an important parameter as f is entirely ignored in Eq.� SEQ form WMag �9�. Furthermore, the behaviour of single ball in the vial is quite different from that, described in [� SEQ list Magini1�4�]. The detachment of a ball from the vial wall in its top part (opposite to the vector R direction) and fall at vial bottom even though this situation is the case, can take place only once and can not be the recurring action. After such jump the ball begins execute the dying oscillatory motion about the end of vector R (pseudogravity direction). In the long run the ball occupies the stationary position at the R�end, following its rotation with angular frequency (0 and rolling over the wall almost without energy consumption. The leaps of the balls are entirely cooperative effect. When a large heap of rolling balls moves inside the vial some of the upper balls may be thrown over the heads of others due to friction with them. Moreover, it seems likely that Eq.� SEQ form wmag  �9� has a restricted range of applicability, at least as concerns the ratio R/rv.


	Our simulation shows that as plate radius R increases and ratio R/rv reaches the value of about 3.5 and more, the behaviour of balls changes drastically and dissipation of energy therewith slows down sharply. In this mode all the balls spread over the vial walls by as far uniform layer as possible and stick to the walls so that the mobility of balls drops almost to zero. The motion of any ball, both spatial and rotary, is frozen. Energy intensity of the mill in this case is about some tens of watts instead of some kilowatts predicted by Eq.� SEQ form wmag �9�. Naturally, ratio R/rv > 1.5 is not commonly used in practice but puzzling moment is that Eq.� SEQ form wmag �9� contains no hint on such breakdown of mill behaviour.


	The condition of ball adherence to the wall at the critical uppermost point opposite the vector R can be deduced from Eq.� SEQ form ff1 �1�. For the projection on vector R this equation is brought to the form:


(2(r = �EQ \f(F;m)� + (p2(R ( (v2(r ( 2(v((p(r,				 (� SEQ form  �10�)


where r = rvi ( rb, rvi is the internal vial radius, ((r is a ball linear velocity along the wall. If we assume that r ( rve ( rvi and make substitutions x = R/rv, y = (/(p  then considering that wall holding force F ( 0, Eq.� SEQ form fy �10� can be rewritten as inequality:


(y ( x)2 ( x					 (� SEQ form  �11�).


�
Energy intensity of two�dimensional vibratory mill as function of occupancy.


�EMBED MSDraw.Drawing.8.2��� Fig.�SEQ pic   �3�. 


Energy intensity of three�dimensional vibratory mill as function of occupancy.


�EMBED MSDraw.Drawing.8.2���Fig.�SEQ pic   �6�.


The corresponding adherence condition for the lowest point of the vial at the end of vector R (y � x)2 ( (x is always satisfied. Notice that adherence to the vial top is possible only in the case of ball retardation with respect to force�generating vector R, i.e. given ( < (0 (y < 1 + x) because under ( = (0 (y = 1 + x) inequality � SEQ form fz �11� is not satisfied. Provided that x > 1 and y < 1 + x the condition � SEQ form fz �11� can be put in a form y ( x ( � EQ \r(x) �. Note that the greater x the wider range of y suits this condition promoting the adherence.


Average impact velocity as function of occupancy for three�dimensional vibratory mill. 


�EMBED MSDraw.Drawing.8.2���


Fig. � SEQ pic  �5�.


Figure �SEQ pic p2  �3�, � SEQ pic p3 �6� represent the influence of vial occupation on energy intensity for planar and spatial vibratory mill models. The tooth�like character of the curves is an evidence of significant ’’quantization’’ effects, i.e. high sensibility of energy output to the presence of partially filled or closed shells (completely packed flat layers of balls). These effects are more pronounced for planar model because of less number of balls and degrees of freedom of an individual ball. Appearance of the third dimension leads to additional disorder in ball configuration and motion. Fig.� SEQ pic p4 �5� demonstrates the dependence of average (root-mean-square) velocity of the balls on occupancy coefficient ( and has a distinct  maximum at about ( = 0.3. On further growth of ( and corresponding decrease of free volume the average velocity drops to zero. The most regular mode of ball motion takes place when only one ball layer is completely filled. In this case all balls move together as one solid and do not hinder each other to use free volume of the vial in full measure. Local and global maxima at the fig.� SEQ pic p3 �6�,� SEQ pic p4 �5� respectively at about (=0.3 correspond to this case.


	While considering the vibratory mill with flat edges which vertical coordinates evolution obeys to harmonic law z1(t) = A(sin(t, z2(t) = H + A(sin(t (A is an amplitude, (=2(( is an angular frequency and H is a vial height), we improved the formula for energy intensity reported by Streletsky [� SEQ list Strel �5�]. The innovation is in factor K which can be calculated exactly in simple cases. It has been supposed: i) the absence of balls interaction; ii) absolutely inelastic impact; iii) negligibly small role of gravity. Then energy milling intensity W is given by


W = (2()2(N(m(A2((3(K,				 (� SEQ form  �12�)


where N is the number of balls, m is a ball mass and 


�EMBED Equation.DSMT4���				 (� SEQ form  �13�)


Here ti is the instant of i-th ball-edge contact; xi = (ti (xi+1 > xi), ci = cos xi, x0=0, c0=1, n is the number of final contact in a periodic sequence of impacts; Mn=0 if the final n�th contact  is  with the top edge and Mn=1 in the case of the bottom edge; [...] is integer part of the number.


	Value of x1 is determined from equation 


x1 – sinx1 = y,				 (� SEQ form  �14�)


where y = (H–d)/A, d is a ball diameter, H–d is an effective vial height. Notice that x1(y) is uniquely determined periodic function with 2( period and x1 is ((L when y is ((L too (L is integer number).


	Value of xi+1 is the solution of Eq.� SEQ form f4 �15� (ci = cos xi, si = sin xi)


si + (xi+1 – xi)(ci = hi+1 + sinxi+1				 (� SEQ form �15�)


(implying only the least xi+1 > xi), where hi+1=0 or (y depending on what edge undergoes (i+1)�th contact after the i-th contact (zero is for the same edge and (y for the opposite one). Eq.(� SEQ form f3 �14�)) follow from Eq.� SEQ form f4 �15� at x0=0, s0=0, c0=0, h1=y. It should be pointed out that the solution of Eq.� SEQ form f4 �15� may be represented as formalized procedure and thus function xi+1 = Ф(hi+1,xi) becomes actually analytical function.


	Let li be a number of phase quarter of the i-th collision, i.e. 


2(Li  + �EQ \f((;2)�((li  ( 1) (  xi ( 2(Li  + �EQ \f((;2)�(li				 (� SEQ form  �16�)


Table � SEQ table �1�.


The conditions of periodic blow sequence termination or continuation. 


Li�
Top edge�
Bottom edge�
�
1�
end�
hi+1 = y�
�
2�
end�
hi+1 = 0�
�
3�
hi+1= –y�
end�
�
4�
hi+1 = 0�
end�
�
 (Li and li are integers). Table �SEQ table t1 �1� shows the conditions of summing termination (i=n, xi=xn) or continuation (iterative calculation of xi+1 via xi) at the Eq.(� SEQ form f1 �12�).


Consider the important special case when 0 ( y ( ( or in more general form 2L(((y((2L+1)((. As it has been  mentioned above x1 belongs to the same range of  values and hence Eq.� SEQ form f2 �13� takes the form 


�EMBED Equation.DSMT4���				 		(� SEQ form �17�)


On the other hand, if y=1.1(, the impact sequence has aperiodic character and one should break off summation when n reaches the value of about 100 that provides enough averaging accuracy. 


Vial edges evolution in time and ball trajectory. 


�EMBED MSDraw.Drawing.8.2���


Fig.� SEQ pic  �4�.


	Geometrical meaning of the described procedure is clarified by fig.� SEQ pic p1 �4�. Coordinates of edges are plotted as solid sine�shaped lines and velocities of edges are depicted as dashed cosinusoidal curves. In the case of absolutely inelastic impact a ball detachment from the edge occurs with the velocity equal to the edge velocity at the collision instant. Such a detachment may take place either just at collision point (e.g. x1 where edge moves away from collision position with enhancing velocity) or at a point where the edge velocity towards the opposite edge reaches the maximum or amplitude value. There points are shown as full circles. For example after the second impact with the top edge at x2 point the ball adheres to the edge  and then both of them moves together up to the detachment point x=3(. Breakdown at the point x=L(( means the regular termination of a process since the further motion recurs periodically. The total kinetic energy consumption during the period T = � EQ \f(L(;()� = � EQ \f(L;2()� is proportional to the sum of velocities difference squares �EQ \I\su(i;; (ci - ci-1)2)�. Periodic detachment points are repeated at regular intervals 2( for each edge taken separately. 


�
Energy intensity or two�dimensional vibratory mill for one ball as function of height/amplitude ratio. 


�EMBED MSDraw.Drawing.8.2����  � 


Fig.� SEQ pic  �2�


	Notice that if y(0, then x1(0 too and y=x1 – sinx1 ( �EQ \f(x13;6)�, 1 – cosx1 ( �EQ \f(x12;2)�. With these substitutions Eq.� SEQ form f1 �12� takes the form W~A2(K~A2/3((H – d)4/3.


	Fig.� SEQ pic p5 �2��  ��  � illustrates a very good agreement between energy intensity calculated from Eq.� SEQ form f1 �12� and produced by computer simulations provided the model is complied with restrictions made while deducing Eq.� SEQ form f1 �12�.


	The Eq.� SEQ form f2 �13� can be easily generalized for the case of partially inelastic impact. In this case a ball in a detachment point has some excess velocity and its trajectory is no more tangent to sinusoid but secant (see fig. � SEQ pic p1 �4�). It is required to substitute ci (Eq.� SEQ form f2 �13�,� SEQ form f3 �14�) for vi=ci – (1((vi–1 – ci), whereas v0  should take a value 1+(1. In this case the ball adherence to the edge can occur only after the series of rebounds provided that ( is small enough. But the adherence by itself is not of paramount importance for periodicity. As time passes the establishment of some kind of periodic motion, as a rule with a period of 2(, is highly probable. Therefore the averaging time T = 2(/( = 1/( should be taken at calculations of energy yield and the collisions during this time should be considered. 


Conclusions.


	To clear up the role of friction in energy yield of planetary and vibratory ball mills we have carried out the computer simulation of their simplified planar models. While simulation the balls are allowed to rotate due to off�center impacts with each other and oblique impacts with vial walls provided the gliding friction coefficient is different from zero. As a result of impact both normal and tangential velocities of any ball change as well as its rotational speed. It is found that friction is of prime importance for planetary mill where it provides the overwhelming part of energy output. On the other hand, the role of friction is small for vibratory mill ( it does not influence the energy release or even reduces it to some extent. The validity of the law 


W = (2()2 (M((3(R2(K, 


where W is energy yield, M is the total mass of milling bodies, ( and R are characteristic circular frequency and linear size of the mill, is beyond doubt, but the nature of the proportionality coefficient K calls for further investigations. In the case of planetary mill K is affected by the ratio of plate and vial radii and can be reduced to zero when this factor reaches the value of about 3.5 and more (for the vial with thin walls). In the case of vibratory mill with a single ball (or steady configuration of many balls without interference) we have produced the analytical expression for K.
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